
Programming Complex 3D Meshes. A Generative
Approach Based on Shape Grammars

Prof. Dr. Umberto Roncoroni
Faculty od Design, Universidad Peruana de Ciencias Aplicadas, Lima, Perù

www.digitalartperu.org
e-mail: umberto.roncoroni@upc.pe

__

Abstract

This article summarizes the results of art
based research developed thanks to a
grant of the PUCP University of Lima in
2021 2022. It will be described an open
source generative solution, based on
generative grammars to create very
complex and programmable 3D meshes.
Analyzing hundreds of models generated
with these algorithms, it was found a
solution based on the idea of “intelligent
meshes”, which change their behavior
during the modeling process. This is
done using tags, or vertices identifiers,
that, like genes, describe the topological
characteristics of each vertex and i ts
generative development during the
process. Tags can be pr ogrammed
interactively editing its data with tools
provided by the interface or using

generative grammars that allow an
incredible variety of complex forms and
stimulate the user creativity. The
research findings also elucidate some
important conceptual issues, like the
importance of original technology
development to defend cultural identity.

1. Introduction
Creativity is a key issue in arts, science
and cultural industries, not to mention
that it is of the greatest concern for
innovative educational programs. But
creativity is a difficult topic to be handled
properly. I t is enough to mention just
three problems: creativity is hard to
define, explain and measure [1], its
aesthetic meaning and aura are
jeopardized by postmodern art [2], over
production and media saturation, and,
last but not least, the disruptive effect of
digital media.
To enter directly into the digital matter,
today computational creativity, 3D
modelling, animation and i mage
processing technologies research, such
as generative algorithms or fractals, is
occupied by the AI and Machine
Learning discourse. But AI, not so much
paradoxically, leaves small room to
users’ creativity (Colton 2008) and,
spreading Anglo-Saxon computational

XXV Generative Art Conference. GA2022

page # 286

thinking, is one of the most efficient
assets of digital colonization [4].
These are good reasons to develop
shape grammars [5] and generative
algorithms as a v alid alternative [6], for
their simplicity, creative power [7][8] and
because they offer the possibility to
simulate natural phenomena and l ocal
artistic traditions, like ethno computation
[9][10], intuitively and without black boxes
[11][3]. In this paper I will concentrate the
attention on software development,
visual analysis and artistic practice
results. Due to these properties, the
generative design tools described in the
following paragraphs will be valuable to
artists, industrial designers and
educators to experiment with new design
processes, explore computational
creativity as a r esearch or educational
tools and t o link parametric design with
cultural identity. From the production
point of view, these algorithms help
artists and designers to explore the
relationships between forms and new
materials also suitable for 3D printers
and robotic fabrication.

2. Methodology
This paper is the result of an
interdisciplinary artistic research project
supported by a grant of the PUCP
University of Lima. The research
methods expand the art based research
framework [12] and consist of: a) Review
of papers in the field of Computer
Science, Digital Humanities and D igital
Art, especially generative design, shape
grammars and ethno computation topics;
b) Analysis of software for audio-visual
creative production (DAWs and 3D
Modelling software R hino and 3D Max);
c) Visual analysis of pre-Columbian art;

d) Software development using extreme
and incremental programming; e) Artistic
practice and digital fabrication with 3D
printers and a Kuka robotic arm.

3. Results
3.1 Literature and Software
Analysis
Papers about computational creativity,
generative art and parametric design
show that the potential of shape
grammars is not fully developed [13].
Besides, there is a l ack of friendly and
interactive generative applications. On
the other hand, plug ins (like EuroRack),
programming languages (like
Processing), game design engines or
DAWs (like Unity or Reaper) that use AI
or generative techniques and c an be
often installed freely, quite often share
the same algorithms and lack proper
documentation. This is reflected in
repetitive and standardized design
artefacts.

3.2 Analysis of Natural Forms,
Pre-Columbian Art and Shape
Grammars Simulations
The capability and potential of L-Systems
to simulate natural phenomena is well
known [7], so it is not necessary to enter
into this topic here. On the other hand,
Pre-Columbian and traditional ethnic art
shows [14] that algorithmic and nat ural
procedures were commonplace.
As shown in figure 1, there is obviously a
computational thinking in the ropes,
knots and colours and a c reative
hypothesis to use them as a l inguistic
code or interface design metaphor to
improve usability in shape grammars
applications.

XXV Generative Art Conference. GA2022

page # 287

Fig 1. The rule system interface design is
similar to quipus, with a bas eline –the
axiom- that opens the sequence of rules.
The effect of the rule depends on i ts
vertical hierarchy, like the quipus’ knots.
For instance, the generative potential of
quipus was investigated by the
neapolitan alchemist Raimondo di
Sangro [15].

3.2 Software Development, Artistic
Practice and Improvement of L-
Systems Techniques
Even if a huge amount of research about
shape grammars exists, the creative
power of symbolic dictionaries, rules and
substitution algorithms can be expanded.
In existing applications rules are rigid,
can’t share parameters and programming
tools like loops or conditional statements.
In previous research [13], were
developed improvements to L-Systems
dictionary and rule sets to overcome
some of their limitations.

Figure 2. Example of symbols for nested
recursive substitution

I will mention here just one of these
extensions: automatic symbols (“n”) with
nested recursion and w ith slave or sub-
symbols (“ñ”) controlled by the number of
instances, or the master symbol

hierarchy in the grammar, or by the level
of the substitution process. Figure 2
explains a design that is impossible to
build with standard L-Systems
vocabulary and rules, since it will be
necessary to write a par ticular rule for
every column to match the number of
blocks and their rotation degrees.
Symbol “n” sets the hierarchy of the
columns in the row and “ ñ” sets the
corresponding number of objects: for
example, the first instance of “n” sets 1
block, the third instance 3 blocks,
etcétera. In this way L-Systems are
converted in a sort of programming
language, like side chain functions, to
link the number of bricks to the empty
space between them, and t o match the
chakana’s grammar to the position and
rotation parameters of the growing spiral
(fig. 3).

Fig. 3. Left: huaca, Andean cross
(chakana), and spirals in the Cantalloq
aqueduct. Algorithmic drawing, L-
Systems to rotate the chakana and t o
match positions with bricks’ number.
Final L-Systems tower.

3.3 Software Development and Artistic
Production
During the research many generative
techniques have been ex plored, using

XXV Generative Art Conference. GA2022

page # 288

self-similarity, natural processes, and
traditional designs’ ethno computation.
After the generation with different
functions and parameters of hundreds of
models, were selected two solution that
solved the task to create something new.
The first is the mesh remix tool set that
expands the standard morphing process
with additions like masks, side chain
modulation, genetic behaviours, shape
grammars and cellular automata (fig. 4).
The second that will be ex posed in the
following sections, is the programmable
mesh technique.

Fig. 4. Left: three meshes (ancestors).
Right: three remix modes of ancestors.

3.4 Generative Programmable Meshes
The algorithm that will be described here
is based on t he idea of a m esh that
changes its geometric properties during
the generation process. Like in cellular
automata and finite state machines, the
mesh’ vertices act like cells whose
values describe topological properties,
transformation parameters and ot her
behaviors. In this way the mesh grows
like an or ganic natural process. This is
done using “tags”, or vertices identifiers,
assigned to a pattern of vertices that can
be programmed interactively or using L-
Systems [6]. This allows for an incredible
variety of complex forms, and stimulates
the user to experiment freely.
In the first step the user creates a pattern
of n poi nts (usually a m ultiple of 8 t o
match symmetry and bytes) and

allocates their alphanumeric identifiers,
the tags. This pattern generates a closed
shape with 8 or 4 axis symmetry (fig. 5).
Here is where shape grammars and L -
Systems come into hand, to create
interactively the patterns and change the
tags during the process.

Fig. 5. Left: example of patterns. Left:
construction of the mesh sections shape.

Fig. 6. Using tags in a pr ogrammable
mesh. Top left: L-Systems grammar, tags
pattern and the complete symmetric
section shape. Down: adding tags
transformations to the linear mesh.

Now, during the mesh construction,
every point can be t ranslated, scaled or
rotated using their tag parameters, and
behave independently or interacting with
other tags, considering its XZ position in
the section and in its height in the mesh
(Fig. 6, 7). I n this way every section or
slice of the mesh can smoothly change
its form without losing the formal
coherence of the mesh as a whole. The
interactions between points and tags can
be done with cellular automata,
interactive functions or reading values

XXV Generative Art Conference. GA2022

page # 289

from data sets or images. The tag rule
set can be processed using the usual
shape grammars substitution process
embedded in the main function (Fig. 8).
These data can be saved and combined
with the others using the remix tools
describe above.

Fig. 7. Left: the pattern, the section and
the linear mesh. Right: t ransforming the
mesh with the same pattern and tags but
different parameters’ values.

Fig. 8. The workflow is from right to left
and from top to down. The right panel
configuration depends on t he previous
choice of the user. The software checks
which buttons are enabled, avoiding
unnecessary work of the user. Help is
included in the panel, improving the
concept of the software as a book.

3.5 Technical Issues of Complex
Generative Meshes
Generative processes like programmable
meshes are highly unpredictable (this is
the reason why they are so fascinating).

But this comes at the cost of geometrical
problems that happens when vertices are
heavily transformed and v ertices’
positions are too rough. In this sense,
tags helps to analyze the topological data
without performing tests that, when you
are working with more than 1,000,000
polygons, slow down the process too
much. The software additionally takes
charge of other issues that could result in
geometric inconsistencies such as face
intersections that cause errors or the
need to use support material in the 3D
printing process.

3.6 Software Development and
Interface Design. The Artist as
Computer Scientist
Working with complexity, generative
processes and art, it results that software
development gets very confusing. It is
interesting to stress here the different
approach to programming of artists and
computer scientists. In the present case,
extreme and i ncremental programming
paradigms where used, but when the
programmers are artists, the
development is a l ot less linear than
expected. While programming needs
careful organization and a pr ecise
workflow, the artistic experimentation and
software development needs
improvisation, serendipity and permanent
trial and er ror processes that leads
quickly to bugs, undesired effects and
ineffectiveness.
The solution was, in the first place, to
experiment freely with the code at the
beginning, and rewrite the entire
application also improving the user
interface design. Through parallel artistic
production, it was found that the best
software architecture should be modular,
to help the user thorough the process
step by step, with every step enabled by

XXV Generative Art Conference. GA2022

page # 290

its predecessor and the compatibility of
geometric properties. The interface
accompanies the workflow with
instructions and examples on how to use
every function, to make the learning
curve as smooth as possible. Finally,
considering the open s ource philosophy
of this application, the code was revisited
in the literary sense, and considered as a
text in its full right.

4. Discussion
Setting apart the artistic and t echnical
benefits, the research findings also
elucidate some important concept issues
about computational creativity and
education.

4.1 Original Technology Research
In the first place, software development
and artistic results exposed the
importance of original technology
research. This infers “reinventing the
wheel”, in other words, to develop
algorithms or functions are already
available in internet. The true of this lies
in the fact that real innovation comes
from the deep understanding and control
of every layer of the process; on t he
contrary, the use and abus e of libraries
and ready to use solutions, that can be
helpful to speed up production, generate
creative constraints –the proper word
should be cages- which creative results
are not of the artist.
Original technology research is
paramount also in the broader cultural
domain, to defend cultural identity and
correct the ideological biases [9] the
commercial modelling solutions for
artists, designers and ar chitects. Every
single line of code embeds significant
knowledge that will unfold completely

when all the pieces are put together,
giving to the software and t o its users
cultural definition and power.

4.2 The Black Box Problem and
the Benefits of Generative Grammars
Solutions
The computational and ar tistic research
results demonstrate that complexity and
creativity forms don’t need complicated
technological solutions; L-Systems, in
this sense, have many benefits. First,
with some improvements, offer control
and flexibility almost like a programming
language, but are easier to understand
(yet certainly difficult to develop
properly). In the second place, L-
Systems grammars and c odes are
transparent, and m ore intelligible,
compared, for instance, with AI
algorithms [16] whose deep
computational processes are puzzling
even for their creators.
I will add that AI can be developed
starting from the fundamental idea of
meta-medium [17] and can be interpreted
as interfaces architecture and des ign in
any application. Also the difficulties of
generative design can be l imited with a
proper interface design and coding style,
both help the users to exploit the
parameters’ creative properties and t he
aesthetics properties of algorithms [18]. It
is important to reckon that many
independent and open s ource solutions
are discarded because of lack of
documentation.

4.3 Issues in E ducational
Technology
These topics are particularly relevant
when digital tools are used in learning
contexts [19]. Generative grammars
lingos, like L-Systems, not only can be
programmed easily, even without

XXV Generative Art Conference. GA2022

page # 291

experience, but also, very much like
Turing machines, they can be developed
by hand [21] and can be used as
methods in analog processes with
traditional materials. Even in digital
processes, the need of computers
appears only in the last step of the
design process; in this way machines do
not interfere with the development of a
creative and critical computational
thinking.
In this sense, cultural identity and ethno
computation references and r esources,
like quipus or the yupana, are not just
visual metaphors for interface layouts or
artistic installations. Embedded and
coded in algorithms and f unctions and
supported by analogies in design
methods, data structures and
computations, cultural traditions come to
life to shape contemporary culture as
concrete methods, solutions and
fabrication tools.

4.4 Conclusions
To finish, I will resume the main concepts
and findings of the research, and s ome
ideas about its future developments and
improvements.

Fig. 9. Generative grammars and
programmable meshes can simulate
different artistic styles, and hel p to
understand their formal processes.

a) Generative grammars proved,
through artistic practice, that are very

creative tools and that there is no need of
machines to foster digital literacy and
computational thinking. Using traditional
techniques and materials overcomes the
techno centric bias that educational
technology carry out [11].
b) Cultural traditions, native artistic
practices and ethno computation are
inherently modular and r ecursive, thus
and can be molded with shape grammars
and the tag solution discussed here
smoothly (fig. 9).
c) Generative art and generative
grammars are techniques with a great
creative and heur istic potential, as
software development demonstrated
during the project activities. From the
aesthetic and epi stemological point of
view, the artistic research validation can
be sustained precisely by this heuristic
potential, whose evidence is the artistic
production and its diffusion in design
communities.
d) Software development and
artistic practice also discovered some
geometric and t opological problems
raised by complex generative processes.
But the programmable tag mesh solution
minimizes this issues and f acilitates the
compatibility with digital fabrication and
demonstrated that complex forms can
improve competences in 3D printing and
robotic manufacture and the possibilities
of recycled organic materials (Fig. 10).

XXV Generative Art Conference. GA2022

page # 292

Fig. 10. Complex meshes to adjust 3D
printing process

Setting apart technicalities, this computer
interdisciplinary research also enlighten
some interesting concepts about
computational creativity and the
relationships between computational
creativity and education.
a) Writing our own functions and
giving up the cut and pas te of software
libraries may seem excessive, since
requires hard work and a s ort of
“rediscovering the wheel” process. But
this is necessary for true digital literacy,
technological innovations and c reativity.
In fact, the control over these pieces of
knowledge (algorithms, processes and
parameters), we eventually miss using
libraries lightly, is the key to add
aesthetic value and originality to our
projects.
b) It should be paid a lot more
attention to the cultural aspects of
software and i nterface design. Software
is a complex cultural object with many
layers of meaning that still we are not
taking advantage as such. For
educational and ar tistic purposes of
computational thinking and creativity, the
artistic research enlightened the
differences between coding and
software. Software is more than writing
code, includes interactivity, the
coherence between ends and m eans,
cultural biases, issues about the
distribution of information of knowledge.
So far, software as cultural object needs
much more humanities than sciences.

4.5 Further development
Generative design methods like shape
grammars and t echniques like
programmable meshes can be
indefinitely developed and improved from

the computational, aesthetic and
educational point of view. I will mention
some lines of research in digital
humanities that seem particularly
important: to develop interface designs
and human-machine interaction
strategies for creative purposes; explore
software as a t ext, in the sense defined
by [20], that gathers technical and
creative means, data, concepts and
audiovisual resources; and f inally,
strategies and pr ograms to improve the
interdisciplinary formation of artists as
inventors and scientists.

References
References
[1] Carnovalini, F. y Rodà A. (2020).
Computational creativity and music
generation systems: An introduction to
the state of the art. Frontiers in artificial
intelligence 3.
[2] Vattimo, G. (2000). La società
trasparente. Milán: Garzanti.
[3] Colton, S. (2008). Creativity versus
the perception of creativity in
computational systems. AAAI Spring
Symposium: Technical Report, pp. 14-
20.
[4] Iranil, L., Vertesi, Dourish, J., Kavita,
P. and G rinter, R. (2010). Postcolonial
Computing: A Lens on D esign and
Development. Irvine: University of
California.
[5] Stiny, G., and J. Gips. (1972). Shape
Grammars and t he Generative
Specification of Painting and S culpture.
In O. R. Petrocelli (ed.), The Best
Computer Papers of 1971, pp. 125–135.
[6] McCormack, J. (2004). Generative
Modelling with Timed L-Systems. In J. S.
Gero, ed. Design Computing and
Cognition. Berlin: Springer, pp. 157–175.
[7] Prusinkiewicz, P. and A.

XXV Generative Art Conference. GA2022

page # 293

Lindenmayer. (1990). The Algorithmic
Beauty of Plants. Berlin: Springer.
[8] Pestana, P. (2011). Lindenmeyer
Systems and t he Harmony of Fractals.
Proceedings of the Chaotic Modeling and
Simulation International Conference, pp.
449-456.
[9] Varma, R. (2006). Making computer
science minority friendly.
Communications of the ACM 49(2), pp.
129-134.
[10] Roncoroni, U and V . Crousse.
(2016). La v irtualidad aumentada:
procesos emergentes, arte y medios
digitales. Artnodes, 17.
[11] Alfieri, A. (2005). L-system Fractals:
an educational approach by new
technologies. Quaderni di Ricerca in
Didattica (Mathematics), 25:2. Palermo:
University of Palermo.
[12] O'Donoghue, D. (2009). Are We
Asking the Wrong Questions in Arts-
Based Research? Studies in Art
Education, 50: 4, pp. 352-368.
[13] Roncoroni, U. (2022). Electronic
Music and Generative Remixing:
Improving L-Systems Aesthetics and
Algorithms. Computer Music Journal,
45:1, pp. 55–79.
[14] Crousse, V. (2011). Reencontrando
la espacialidad en el arte público del
Perú. Tesis presentada para la defensa
del grado de Doctor. Universidad de
Barcelona, Barcelona.
[15] di Sangro, R. (1750). Lettera
apologetica dell’Esercitato accademico
della Crusca. Naples: Gennaro Morelli.
[16] Wyse, L. (2019). Mechanisms of
artistic creativity in deep l earning neural
networks. E n Proceedings of the
International Conference on
Computational Creativity.
[17] Kay, A. (1984). Computer Software.
Scientific American 251(3), pp. 52–59.
[18] Fishwick, P. (2006). Aesthetic

Computing. Cambridge, Massachusetts:
MIT Press.
[19] Stig Møller, H. (2017).
Deconstruction/Reconstruction: A
Pedagogic Method for Teaching
Programming to Graphic Designers. In
Soddu, C. (ed.) 20h Generative Art
Conference GA2017 Proceedings.
[20] Barthes, R. 1997. The Death of the
Author. In S. Heath, trans. Image, Music,
Text. London: Fontana Books.
[21] Roncoroni, U. (2015). Manual de
diseño generativo. Lima: Fondo Editorial
de la Universidad de Lima.

XXV Generative Art Conference. GA2022

page # 294

