
Modularity and Generative Art

Assistant Professor Chad Eby, M.A., M.F.A.
School of Art and Visual Studies, University of Kentucky, Lexington, United States of America

https://chadeby.studio
e-mail: chad.eby@uky.edu

__

Abstract

Modular tools and processes often
occupy significant roles in various types
of generative art practices, whether
implemented in hardware or software.

This paper provides a definition of
modularity, a brief history of modular
systems and examines a r ange of
modular strategies in order to discuss
what aspects may make different
modular paradigms more or less
conducive to generative work.

Issues of intention, connectivity,
complexity, structure vs. content, and
overdetermination are discussed in the
context of the effectiveness of different
modular paradigms for generative work.

Introduction
The aim of this paper is to introduce
modular artmaking systems and make a
first run at an exploration of the history

and special characteristics of a particular
concept of connected modularity and
how its instantiation as specific modular
systems—in hardware, software, and
hybrid forms—may be particularly well-
suited to pursuits in generative
artmaking. The enormous popularity of
node-graph-based modular metaphors
(the abstracted software side of modular,
hereafter referred to just as ‘node-based’)
in art-making tools and systems,
particularly those with significant capacity
for autonomous operation, points to an at
least perceived affinity between
modularity and g enerative art. The
evolution and typical characteristics of
these systems is examined in this paper
with a par ticular emphasis on modularity
in sound synthesis as represented by the
Eurorack format, both physical and
virtual.

Defining Modularity
Modularity is broadly defined by Melissa
Schilling as “…a continuum describing
the degree to which a system's
components can be s eparated and
recombined, and it refers both to the
tightness of coupling between
components and the degree to which the
‘rules’ of the system architecture enable
(or prohibit) the mixing and matching of
components.” [1] Although Schilling’s
primary interest is in developing a
general theory of how and why systems
become more or less modular over time,
this definition and subsequent
terminology, borrowed from a v ariety of

XXV Generative Art Conference. GA2022

page # 65

disparate fields, is a reasonable starting
point for considering modular artmaking
systems.

An important consideration in a
discussion of the suitability of particular
modular systems for generative work
involves what Schilling calls synergistic
specificity: “The degree to which a
system achieves greater functionality by
its components being specific to one
another.” [2] At the extreme low end of
synergistic specificity, modules are utterly
agnostic In terms of their preferred
connections to one another. This leads to
far greater freedom in recombination of
modules (and implies a general and
limited scope of functionality per module)
but comes with a possible loss of optimal
functionality at the system level.
Conversely, high levels of synergistic
specificity may contribute to more
optimized overall system functionality,
but at the cost of overly opinionated
modules (more on t his later) and much
more severe restrictions on
recombination possibilities.

In the terms of generative art, however, it
is critical to interrogate the implications of
what precisely is meant in this theory of
modularity by “optimal.” A central tenet of
making generative art with autonomous
systems is that that the artist must cede
some degree of autonomy to the system
[3]. This giving up of autonomy, among
other effects, creates a capacity for the
artist to be surprised by the system’s
output—something that would certainly
be understood as much less than
“optimal” in Schilling’s management
context.

One implication of a decrease in re-
combinatory possibility with an i ncrease
in synergistic specificity is that
composability, and t hus the condition of
possibility for “type 2” [4] emergent

behavior (that which does not arise from
any one component in isolation, but only
in the connected aggregate) may be lost.
I would argue that, for the purpose of
generative art, encouraging the
possibility of emergent behavior in a
system through more promiscuous (and
less opinionated) modules is to be
desired over efforts toward synergistic
specificity in service to an opt imal
system.

The collection of modules for use in a
particular modular artmaking system will
often exhibit a r ange of different
functions, purposes, or capabilities with
fuzzy edges—some purposes will be
unique to one particular module, and
some, with varying degrees of overlap,
with other modules available to the
system. Modules in these types of
systems are not designed primarily to be
swapped-out with other identical modules
(in case of failure or for production
efficiencies as is the case in a
manufacturing concept of modularity) but
rather to offer shades of difference to a
particular function or transformation in
the flow of a modular system. This is
expressiveness of transformation is
enhanced within a s ystem possessing
modules with multiple variations of a
single purpose or function, facilitating
experimentation by exchanging modules
with different but similar functionality or
effect.

At some level, children’s building blocks,
both traditional wooden sets and t hose
snap-together plastic ones (as well as
tangrams, other tiling systems, and even
strung beads) might meet the criteria of
generative modular system as so far
expressed. But while these examples
may provide a l imited platform for
working generatively with autonomous
rules systems, they lack the feature of

XXV Generative Art Conference. GA2022

page # 66

components communicating with each
other within a modular system.

In Schilling’s definition, the word
“coupling” highlights that in a m odular
system the individual components must
be somehow connected one to another—
due to the limited functionality of each
individual component, a module in
isolation (by design!) is seldom useful.

Connections, whether linear, branching,
or recursive, imply a flow of signal or data
and define the relationships between and
among connected components that
shape the higher-level behaviors of a
given modular system.

One effect of these two characteristics
taken together (a multiplicity of modules
and the necessity of connection) is that
spatial arrangements and connective
topologies often become significant
factors in the way a modular system used
in artmaking both presents and functions.
The “rules” or “system architecture” of an
autonomous rules-based system may be
external but are often encoded directly
into the number and manner of
possibilities for connecting modules—
whether through arrangement and
number of inputs and outputs, connection
types or “flavors,” or spatial or type
constraints imposed by the scaffolding or
matrix within or upon which modules in
the composite system must be placed.

The generalized modular system under
discussion in this paper then consists of
a collection of discrete components
(modules), of usually limited functionality
or purpose each, connected together in
some way, which may receive and/or
send data and/or signals through those
connections, and which are also
sometimes contained in some sort of
organizing and/or connecting matrix.

The Site of Modularity

Where then might we situate modularity?
It seems that modularity is quite
obviously a property of the module. And
yet, in the field of graphic design,
practitioners often work with a ‘ modular
grid’ for page layout where the property
of modularity rests primarily in the
organizing matrix rather than in the
content placed within it (which are
modular only to the extent that they are
spatially constrained by the grid system).
In architecture a modular plan is defined
by some sort of spatial unit. This
confusion of language may have come
about since earlier usage of the word
‘module’ linked it to a measure (the
modulus) rather than the thing measured
today. In the case of Eurorack modular
synthesizers (which we will come to
presently), it is interesting that hardware
modules themselves come in a num ber
of standard widths (called ‘hp’ or
horizontal pitch) but only a s ingle height
of three units (3u) so that they fit into the
uniform rack rails that are the system’s
containing and organizing matrix.

A (Rather) Incomplete History of
Modular Systems
Heterogenous, physical “box-and-wire”
modular systems originated from the
needs of early electronic lab and r adio
test equipment, telephony systems, and
most notably from the 1950s electro-
acoustic studios of Westdeutscher
Rundfunk (WDR) in Cologne, Groupe de
Recherches Musicales in Paris, and the
Studio di Fonologia Musicale of Milano
(the Milan Electronic Music Studio aka
RAI Studio of Phonology) where
standalone oscillators, function
generators, filters etc., housed in large
sheet metal cases, were connected
together to produce early electronic
sound and music. To get an idea of the
sort of equipment used in those early
days and how it sounded, please see

XXV Generative Art Conference. GA2022

page # 67

Giorgio Sancristoforo’s Berna 3 software
[5].

A decade or so later across the Atlantic,
these systems began to evolve toward
their now more familiar form on the east
and west coasts of the United States.

The first system that could be described
as a modular sound synthesizer was
invented by German Engineer Harald
Bode while working for the Estey Organ
Company in Battleboro, Vermont in 1959.
[6] Called the Audio System Synthesizer,
Bode’s somewhat ungainly machine
reimagined the room-sized electronic
music studios as a more-or-less portable
unit with arrays of input and output jacks
with which one c ould use short wires
(with plugs on each end) to connect the
various oscillator, filter and am plifier
modules in a m ultitude of easily
reconfigurable states or “patches.”

Directly inspired by Bode’s innovation
and developing more or less
independently on the east and west coast
throughout the late 60s and early 70s,
the modular audio synthesizers produced
by Robert Moog and Don Buchla further
miniaturized and popularized the concept
of a p ortable modular system. Buchla,
especially, seemed to have already seen
these smaller modular systems as
potential platforms for generative work
rather than traditionally performed
instruments: the Series 100 product
eschewed a s tandard keyboard in favor
of various sliders, knobs, and touch-
sensitive controls meant to trigger and
modulate sequences and parameters.
Today, “west-coast” synthesis remains
synonymous with a m ore experimental,
often generative, approach to sound
design and music using non-traditional
controllers and inputs.

It wasn’t until 1996 that Doepfer released
the A-100 modular system with a format

that came to be known as Eurorack. This
physical form-factor is now the most
dominant (and de facto standard)
modular audio synthesis hardware
system, and arguably the paradigm most
often referenced in the multitude of
software node-based interfaces
(including both the screw-head-literal and
the abstractly metaphorical) that now
exist for visual coding environments,
sound design software, visual effects and
compositing tools, and even 3D modeling
programs.

One of the earliest of these on-screen
node-based modular systems was the
GRaIL (Graphical Input Language)
software system described in a
September 1969 memorandum prepared
by the RAND Corporation for ARPA. [7]
This novel “Experiment in Man-Machine
Communications” employed a l ight-pen
that enabled a u ser to sketch out
algorithms as a collection of box-like
modules—connected in the style of a
flow-chart—directly onto the glass face of
a cathode ray tube monitor. The “flow
process chart” was already a f amiliar
fixture in engineering circles, having been
introduced to the American Society of
Mechanical Engineers by Frank and
Lillian Gilbreth in 1921 [8]. But beyond
being a sophisticated drawing tool
producing for flow charts, GRaIL was
performative…it could also directly
execute the algorithms sketched by the
user: the visual block diagram of the
structure of the code was also the code
itself. This ahead-of-its-time system
contained much of the DNA for the many
subsequent node-based software
interfaces that would follow it.

In 1985, at IRCAM (Institut de recherche
et coordination acoustique/musique) in
Paris, Miller Puckette began work on a
graphical programming environment that
would eventually evolve into two distinct

XXV Generative Art Conference. GA2022

page # 68

lines of software that have come to be
known as Pure Data (1996) and
Max/MSP (1997). [9] Max/MSP, a
commercial product from Cycling ’74
(part of Ableton since 2017) and Pure
Data (often abbreviated to PD), a f ree
and open-source cousin to Max, perhaps
best embody the tangled heritage of
node-based modular software systems
that grew both out of performative
algorithm-defining flow charts and
graphical metaphors for interconnected
signal generators and processors. This is
most obviously manifested in the
graphically differentiated communication
“wires” in the applications that represent
control and signal flow with distinctly
different appearances (signal wires in
Max/MSP are striped and “furry,” while
control wires are smooth grey vectors).

In fall of 2017, in conjunction with
KnobCon, a Chicago-based modular
synthesis convention, Andrew Belt
released the initial beta version of VCV
Rack, a virtual modular Eurorack
synthesis platform including software
emulation of both physical commercial
hardware modules and entirely imaginary
ones, variably transparent virtual patch
cords, and an infinite simulated modular
case with visible rack rails.

Though not the first virtual modular
software synth (Native Instrument’s
Reaktor (originally released as
Generator) has been available since
1996), the free version of VCV Rack
(now on version 2) is maturing into both a
viable alternative to hardware Eurorack,
as well as a useful compliment through
MIDI to control voltage and c ontrol
voltage to MIDI modules and circles the
story of modular interfaces firmly back
toward where they began in sound
synthesis.

Eric Hosick has compiled a list of over
100 “visual programming languages” with
a screenshot (and an occasional video)
of each interface in action. [10] Almost all
of these examples qualify as some sort of
modular system, and taken together,
exhibit an absolutely bewildering array of
graphical styles and implementations of
the modular metaphor underscoring the
proliferation of this way of thinking and
working.

The Lure of Modularity
Simply dividing a pr ocess into smaller
units—say, for analytical reasons—
almost immediately suggests new
generative possibilities through the
selection and recombination of those
units. Such was the case with Vladimir
Propp, who famously proposed a s eries
of analytical functions that could be used
to describe and classify existing Russian
magical fairy tales in his 1968 book
Morphology of the Folk Tale. Somewhat
less famously (and even unknown to
some who later worked on similar
systems), Propp also described a method
to use his functions to generate entirely
new fairy tales in what Pablo Gervás
argues may be one of the earliest
documented descriptions of a creative
process described procedurally. [11]
There seems to be something about units
of story, dis-integrated from their specific
narrative arcs, that stimulates a human
desire to recode the modular parts into
new patterns.

Long before Propp, fortune-telling
methods like the I-Ching and t he Tarot
used modular units to procedurally
generate small divinatory narratives. But
roughly contemporaneous with Propp,
Bode, Buchla, and Moog were
developing an altogether different kind of
generative modular process based on
analytical tools—modular sound

XXV Generative Art Conference. GA2022

page # 69

synthesizers inspired, in this case, by
deconstructing and re-combining features
of radio test equipment originally meant
for analysis. The metaphor of ‘patching’
modular synthesizers, in turn, has
spawned generations of the previously
mentioned visual programming
environments, including those like Pure
Data, Max/MSP, Touch Designer and
vvvv that rely on modules (and their
connections) to express and create
algorithms; these environments in
particular are often used to conceive and
produce generative artwork.

Modular systems are especially useful for
algorithmic generative art because they
tend to be rules-based at multiple
levels—both within an individual module,
where parameters may be d efined,
exposed, and modulated, but also at the
level of the whole interconnected system
of nodes, since the node graph (or patch)
will, taken in its entirety, itself describe a
larger rules system.

The legibility of the flow of a whole
system (at least in simple patches!) is
often a bet ter situation for people who
have a pr eference for (and developed
skills in) visual understanding than text-
based coding would provide. Patching
patterns may suggest themselves in
terms of visual proximity, alignment,
balance, symmetry, or rhythm that might
not be appa rent when working with a
text-based coding language (in the case
of software) or menu-diving (in the case
of non- or less-modular digital hardware).

The ability to make small changes within
a module, or (more often) in the
connections between modules, that
nonetheless results in large and
potentially unexpected changes to the
overall behavior of the rules
system/patch can be rather seductive.

Modular systems also both encourage
and constrain an artist in potentially
constructive ways. They provide
encouragement because they expose a
combinatorial palette for composing
algorithms or rules systems as a sort of
“kit-of-parts” that may help express intent
by hinting at what is possible within the
system, as well as avoiding the need for
the artist to recall with great precision all
of the commands and syntax native to
text-based programming environments.
Node-based systems also seem to tickle
that particularly homo narrans [12] itch to
create a sort of narrative flow from small
parts; call it the “joy of patching.”

Constraints can be useful too, particularly
when they are baked into the way
modules may be c onnected so as to
prevent, in real time, connections that
would inevitably lead to undesirable
outcomes rather than after-the-fact
syntax or compile-time errors. Some
modular systems meant to teach children
coding (such as MIT’s Scratch and
Adafruit and Microsoft’s Make Blocks)
keep the kit-of-parts philosophy but
forego the boxes-and-wires node graph
interface in favor of color-coded puzzle
pieces whose shapes are keyed in such
a way that they can only be assembled in
ways that make syntactic sense. Other
systems, like Blender’s node-based
material editor have color-coded inlets,
outlets and wires that visually distinguish
data types such as RGB color data, XYZ
vector data, complete shaders or single
numeric values.

Many node-based systems have
modules that evaluate simple logical
operations such as AND, OR, NOT, and
XOR (exclusive OR) and others that
compare signals or data to one anot her
or a f ixed value at specific intervals for
conditional operations like >, <, or ==.
These modules, when connected to other

XXV Generative Art Conference. GA2022

page # 70

modules generating periodic, chaotic, or
random values can be used to create
complex behaviors from simple rules to
generate sound, images, geometry,
motion, video, etc., or to modulate the
parameters of other modules, modulate
other modulations, or even modulate
themselves. This last capability is
particularly useful for generative work,
since various forms of feedback or
recursion, mixed with other inputs and
modulation, can be an extremely
effective generative strategy across
many forms of media and may give rise
to emergent behaviors that are difficult to
precisely predict.

A common source of modulation in node-
based systems is the LFO, or low-
frequency oscillator. These modules
produce one or more wave functions or
different shapes that can be u sed to
describe rising and falling action over
time spans ranging from audio range (so
that they may be heard as a tone) up to
much longer durations, including a
tongue-firmly-in-cheek Seriously Slow
LFO for VCV Rack from Frozen
Wasteland that has time base settings
ranging from “YEARS” to “HEAT DEATH”
[13].

Other useful elements for generative
strategies in a node-based environment
include patchable sources of chaos (like
pendulum and orbital mechanics
simulations, Lorenz attractors, fractals,
etc.) as well as some sources of
uncertainty, such as Bernoulli gates
(which shunt an input value to an A or B
output based on a (selectable and
modulable) probability), various colors of
noise functions, and sample-and-hold
modules that periodically dip into a
stream of values (random or otherwise)
and present what returns at an outlet.

Sequencers, a s taple of audio
synthesizers, are modules that emit a
series of fixed values/voltages/colors
when ‘banged’ or clocked. These are
especially well-suited to generative serial
composition strategies, especially when
the sequence length is modulated by a
second module, or multiple sequences
are that are interleaved based on chance
operations or other chaotic sequences.

An effective modular system for
generative work then will include a large
(but not too large!) set of simple,
composable modules with multiple
variations of common functions, that
possess somewhat opinionated
connections, and allow for conditional
operations, recursion (feedback),
complex modulation and chance
operations.

Some Drawbacks
Node-based environments are
notoriously difficult to “read” once they
reach a c ertain level of splayed-noodle
complexity. The same visual and spatial
relationships that make node-based
systems so powerful and legible to begin
with also make maintaining anything
beyond a fairly simple patch—or making
sense of a patch authored by someone
else—particularly challenging. Methods
of leaving comments in a patch or
documenting its structure do exist in
many node-based systems, but often
they either feel like afterthoughts, are
poorly implemented, or both. Color-
coding of inlets, outlets and wires (either
baked into the system or as a published
convention) can also mitigate visual
confusion but is not a completely
effective solution.

Modular systems that provide some
method of sub-patching (roughly
analogous to functions in other text-
based programming) ameliorate the

XXV Generative Art Conference. GA2022

page # 71

tangle of spaghetti and give a c learer
high-level view of a patch, but at the cost
of low-level visibility and understanding,
essentially making brand-new,
functionally overloaded, components.

Indeed, if individual modules are too
multifunctional (either by original design
or as the result of sub-patching), it
becomes easy to lose situational
awareness in a patch and also
disincentivizes quick substitution of
similar patches for experimentation
purposes (because too many collateral
parameters/interior modules would be
lost in the swap).

This is where text-based programming
languages shine: a complex but well-
commented program with rationally
named variables and functions is
relatively easy to read, maintain and
confidently modify when compared to a
complex modular system.

Back on the hardware side of modular,
both audio and video synthesis modules
tend to be quite expensive on their own.
Generally ranging from 50 USD each for
the simplest passive modules and up t o
1000 USD each (and beyond) for the
most sophisticated ones. And since a
modular system needs an abundance of
modules to be effective, for most people,
a hardware Eurorack system is a
significant expense.

When It Emerges from the
Skronky Murk, the Krell is a
Writhing, Cavorting Phantasm
In the 1956 sci-fi film, Forbidden Planet,
a rescue mission to Altair IV reveals the
remnants of an alien civilization, the Krell,
in the form of an enormous subterranean
machine and a half-million-year-old
recording of a performance by Krell
musicians. The soundtrack for the film,
including the Krell music, was recorded

by Louis and Bebe Barron using a
collection of hand-made electronic
instruments and tape manipulation. Even
though the film’s release predated Bode’s
experiments with modular synthesis by a
few years and did not use any sort of
modular patching technique, creating
some version of a “ Krell patch”—a
generative self-playing system in
modules—has become something of a
rite of passage for both hard- and
software modular enthusiasts after being
popularized by west-coast modular
synthesist Todd Barton around 2012. [14]

“Krelling” is now something of a
generative modular ‘hello world’ exercise
in that it shows that both the modular
system and its patcher can perform in a
generative idiom.

This fanciful ritual—intuitively recreating
and extending the imaginary music of a
long-dead fictional race—is achieved
canonically through the use of a p air of
looping amplitude envelopes (preferably
ones with end-of-cycle triggers) and a
chaotic or random source for pitch
information.

As many variations of this patch now
exist as there are people who patch it,
and for many, “Krell” is as much a
synonym for generative or self-playing
patches as it is a specific modular
configuration.

The longevity and prevalence of the
practice is evidence of the generative
tendencies of modular systems (it is
difficult or impossible to manage to Krell
on synthesizer which is not at least semi-
modular) and speaks to the joy of
patching.

References
[1] Schilling, Melissa A. "Toward a
general modular systems theory and i ts
application to interfirm product

XXV Generative Art Conference. GA2022

page # 72

modularity." Academy of management
review 25, no. 2 (2000): 312-334.

[2] Schilling, "Toward a general modular
systems theory and its application to
interfirm product modularity," 312.

[3] Galanter, Philip. "Generative art
theory." A Companion to Digital Art 1
(2016): 147-180.

[4] Hinton, Heather M. "Under-
specification, composition and em ergent
properties." In Proceedings of the 1997
workshop on N ew security paradigms,
pp. 83-93. 1998.

[5] Sancristoforo, Giorgio. “Gleetchlab
Substantia Fantastic Voyage berna3
Quadrivium Bentō.” Giorgio
Sancristoforo. Accessed November 8,
2022.
https://www.giorgiosancristoforo.net/.

[6] Bode, Harald. "Sound synthesizer
creates new musical
effects." Electronics 34 (1961): 33-37.

[7] Ellis, Thomas O., John F. Heafner,
and William L. Sibley. The GRAIL
Project: An experiment in man-machine
communications. RAND CORP SANTA
MONICA CA, 1969.

[8] Krajewski, Markus. "The Structure of
(Information) Infrastructure: Origins,
History, and Theory of the Flow Chart."
Seminar für Medienwissenschaft,
Universität Basel, 2020.

[9] Puckette, Miller. “The Patcher.” In
Proceedings of the 1988 International
Music Conference (ICMC '88), pp 420-
429, 1988.

[10] Hosick, Eric. “Interface Vision.” Blog.
Accessed November 8, 2022.
http://blog.interfacevision.com/design/des
ign-visual-progarmming-languages-
snapshots/.

[11] Gervás, Pablo. "Propp's Morphology
of the Folk Tale as a Grammar for
Generation." In 2013 Workshop on
Computational Models of Narrative.
Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2013.

[12] Ranke, Kurt. "Kategorienprobleme
der Volksprosa." (1967): 4-12.

[13] VCV Rack. “Library/Frozen
Wasteland CDC Seriously Slow LFO”
almostEric. Accessed November 8, 2022.
https://library.vcvrack.com/FrozenWastel
and/CDCSeriouslySlowLFO.

[14] Warner, Dan. Live Wires: A History
of Electronic Music. Reaktion Books,
2017.

XXV Generative Art Conference. GA2022

page # 73

