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Abstract 

I already explored the fascinating world 
of snowflakes for GA 2016. Being mostly 
interested in the relation of snowflakes to 
grammars at that time, I  developed a 
fractal model based upon IFS. But the 
natural way of thinking of the growth of 
snowflakes is rather through hexagonal-
cell cellular automata. I had a first 
attempt at that with a hybrid integer-value 
CA, combining a two-layer CA with the 
classical one.  

Though all these experiments were 
providing aesthetically interesting results, 
those were disappointing as realistic 
snowflakes. In particular, they did not 

feature the famous “dendrites”, 
characteristic of a lot of snowflakes. 

I recently discovered a 2004 paper by  
Clifford A. Reiter, in which he proposes a 
real-value CA, able to generate those 
hoped for dendrites.  

In this paper I expose and implement his 
model and show how efficient it indeed 
is. Analysing it raises some questions, for 
instance thresholds beyond which 
dendrites emerge.  

Beyond that implementation and 
exploration, this paper extrapolates this 
model to other tessellations, such as 
triangular- or square-cell frames.  

Lastly, this paper explores the links 
between real-value averaging 
neighbourhood models,   their capacity to 
provide emerging patterns, and their 
interest for generative art. 

 

1. Snowflakes as cellular 
automata 

Snowflakes, or, should we say, snow 
crystals (because actual snowflakes are 
generally constituted of a few intertwined 
snow crystals) have fascinated many 
people for a long time, for their six-fold 
symmetry and their great diversity [1]. A 
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French mathematician, Etienne Ghys, is 
one of the most recent representatives of 
this fascination [2]. Though he does not 
himself provide any new insight about the 
formation of snow crystals, his book 
made me discover a reference I 
unfortunately missed in 2016, though I 
should not have, for it is written by one 
the authors of the paper describing a CA 
model I did exploit [3]. 

In 2016, I explored some fractal IFS 
models, because my aim was not so 
much to get realistic snow crystals. My 
entry door into snowflakes was through 
Jules Bourgoin, and I wanted to see what 
relationships to grammars snowflakes 
could have. But it is obvious that 
considering how snow crystals (as well 
as any crystal) actually grow, cellular 
automata are the most likely model 
candidates, and even strictly growing CA, 
which are the only ones considered here. 
As a matter of fact, crystals grow by 
aggregation to a cluster, by contiguity, 
and most importantly, they do so on a 
frame that is a tessellation of space, 
which is a crucial feature of cellular 
automata. 

An amazing feature of snow crystals, 
contrary to most other crystals, is that 
they develop, more or less, in a plane. 
Surely, there are prism-like snow 
crystals, but even in those, one sees the 
specific hexagonal symmetry present in 
the section of the prism. If snow crystals 
develop in 3D space, that space if not 
isotropic: there is a plane in which the 
hexagonal frame is deployed, plus a 
linear axis perpendicular to that plane. It 
is then a legitimate approach to simulate 
the growth of snow crystals with 2D 
hexagonal-cell cellular automata. 

The fundamentals of cellular automata 
imply first that cells are all of the same 
size and are contiguous which each 
other. Frames are then analogous to 
tessellations, or tilings, of the space we 
consider.  In 2D, as is well known, only 
three tessellations are possible: by 
triangles, by squares, or by hexagons. 
Square cells are the most used because 
they are the simplest to simulate, being 
possible to be represented by pixels in a 
bitmap. Hexagonal cells cannot be 
represented in that way, and we have to 
contrive this hexagonal (or triangular, if 
we consider the centres of cells) 
tessellation with the orthogonal nature of 
bitmaps. Incidentally, one can remark 
that this ‘nature’ is not essential, for 
instance the  cathode-ray tubes used a 
hexagonal frame. 

Another crucial feature of CA is the 
definition of neighbours. While for an 
orthogonal CA there may be an 
ambiguity, between considering only 
neighbours that share an edge or 
including those that share a vertex, for 
hexagonal cells, it is straightforward: 
each hexagon has six neighbours and 
only six. 

Now, we can also expand the 
neighbourhood by adding to the first ‘ring’ 
of neighbours... And then, ambiguity 
appears for hexagons. We have six 
neighbours at the peak of the first 
hexagonal ring, and six others that nestle 
between them.  

The last feature defining a CA is the 
notion, and numerical nature, of ‘state’. A 
state may be an integer, the most 
simplest version being two-states CA, 
where the two states may be interpreted 
as ‘alive/dead’, ‘occupied/free’, and so 
on. But one can also consider more that 
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two integer states, or even ‘real-value’ 
states (knowing that in any case, those 
‘real’ values are actually ‘float’ values...). 

A CA evolves through a discrete time, 
the state of any cell at time t+1 being 
determined by its own state and the 
states of its neighbours at time t, and 
only by that. In integer-value CA, one 
takes into account the number of 
‘occupied’ neighbours, while in real-value 
CA, there is generally an averaging of 
states of neighbours. 

The simplest hexagonal CA is a two-
states CA where states may be 
interpreted as ‘non frozen’ and ‘frozen’, 
whichever integer we choose to use. A 
cell ‘appears’ or is frozen depending on 
the number of its neighbours, no cell 
‘disappears’, or ‘melts’.  Each rule is 
embedded in a binary number, putting a 
1 or a 0 depending on the result wished 
for the rank in the number. One can then 
translate it into a decimal number for 
facility. Let’s call it the ‘classical’ CA (Fig. 
). 

  

Fig. 1: a result of the ‘classical’ CA 

Results are not bad, they actually meet 
with a tendency observed in the growth 

of snow crystals, i. e. growing on the 
peaks of a previously grown full hexagon. 
But they obviously lack the complexity of 
main snow crystals, and certainly not the 
characteristic dendrites  shown for 
instance in Bentley’s photographs [4] 
(Fig. 2). 

 

  
Fig. 2: Bentley’s microphotograph 
2. The quest for dendrites 
2.1 A hybridized model 
I exposed in 2016 the model elaborated 
by Coxe and Reiter. It is a somewhat 
complicated CA, implying a second ring 
of neighbours and real-value states (for 
further details see [1]). Beside being 
complicated, this model does not really 
provide realistic snowflakes, and yet no 
dendrites. 

Actually, after writing the paper, and 
being inspired by that model, I found a 
better way to get more complex and 
interesting results. First I simplified 
greatly their model, keeping the idea of a 
second ring of neighbours, but going 
back to two integer states. The rules are 
very close to those of the classical CA, 
but a condition is added: neighbours are 
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considered only if they have themselves 
a neighbour in that same direction. 

The result is in itself very disappointing, 
for it leads to a thin star, but the key is to 
hybridise it with the classical one, i. e. 
once in a while activate one of those 
previous rules (Fig. 3, 4). 

  

Fig. 3: a result of the hybridized CA 

  

Fig. 4: a result of the hybridized CA 
2.2 Reiter’s model: description 
and implementation 

Let’s now arrive to Reiter’s model [5] 
which is the one that incited me to go 
back to snowflakes. 

It is a real-value CA, a cell will be 
considered as frozen when its value is 
greater or equal to 1. One affects a value 
smaller than 1, called β to the whole 
background, and 1 to one cell (or 
eventually a cluster of cells) which 
constitutes the ‘seed’ of the crystal. At 
each step, one considers the current 
state of each cell (for instance such as 
just described at the start) and initialises 
the next state at 0 for all cells. 

The computing is then performed in two 
stages. First, one determines cells that 
are frozen (state >= 0), or neighbours of 
frozen ones, they are called ‘receptive’. 
The next state of those cells is equal to 
their current state, with the add of a 
constant γ. Their current state is put at 0 
for the next stage. 

The next stage concerns all cells. An 
averaging is made of the current states 
of each cell and its neighbours. This 
averaging is added to the next state of 
each cell. The averaging gives a weight 
of 1/2 for the considered cell, and 1/12 
for each of its neighbours. 

Reiter then observed that, for certain 
values of β and γ, dendrites finally and 
happily appear (Fig. 5 where, as in next 
figures, only states >= 1 are shown,  from 
white (state =1) to grey). 
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Fig. 5:  β=0.4  γ=0.001    

Reiter published a table of results for 
different values of β and γ, in which we 
see that dendrites appear very 
specifically for background values around 
0.4.  These dendrites may be very close 
from those actually present on snow 
flakes, while other ones are more 
fishbone-like or feather-like. 

Other results may be called ‘stars’, and 
other ones ‘patterns’, roughly similar to 
those obtained for some rules of the 
classical integer-value CA.  
2.3 Reiter’s model: discussion 

The additive constant γ is not compulsory 
in order to get complex (including 
dendritic) and very diverse results (Fig. 
6-12).  

  
Fig. 6:  β=0.3  γ=0 

  
Fig. 7: β=0.4  γ=0 

  
Fig. 8:  β=0.5  γ=0 
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Fig. 9: β=0.6  γ=0 

  
Fig. 10: β=0.7  γ=0 

  
Fig. 11:  β=0.9  γ=0 

  
Fig. 12:  β=0.99  γ=0 

What this sequence shows is that the 
progression from dendritic to pattern (Fig. 
12), passing by petals (Fig. 11), is not a 
continuous, smooth one. Let us examine 
what happens for values of  β between .9 
and .99. There is a sequence of strongly 
ribbed stars until .929 and an abrupt 
jump to a typical pattern for .93. 

  
Fig. 13:  β=0.929  γ=0 
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Fig. 14:  β=0.93  γ=0 

How many decimals we try to add, the 
model does not seem to yield a smooth 
transition between those two types of 
very different results. 

Even if we focus on the start of the 
process, we are not able to catch any 
transition (Fig. 15, 16 where states < 1 
are shown in values of blue). 

  
Fig. 15:  β=0.9295  γ=0 

 
Fig. 16:  β=0.92958  γ=0 

Reiter’s arguments justifying his use of a 
real-value CA, the meaning of values of  
background and additive constant, and 
the averaging process, are convincing. It 
is plausible that some process of 
diffusion (mimicked by the averaging) 
takes place, with changes of temperature 
leading to ice as soon as it attains 0°C.  

Is Reiter’s model the ultimate solution to 
the snowflake problem? It indeed 
catches some features such as dendrites 
that are  not attained by other models. 
But some other configurations are not 
obtained, while some results of the 
model do not seem to correspond to any 
actual snowflake.  

This model has been pushed further 
towards an even more accurate 
correspondence to actual snowflakes by 
Gravner and Griffeath (applets have 
been developed for instance here [6]) 
who define and use seven parameters 
instead of two. While results are indeed 
very interesting, one may regret the 
simplicity of Reiter’s which can, even with 
only one parameter, produce a great 
variety of complex results. 
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All the more because this unique 
parameter or those two,  may be 
tampered with during the process, 
mimicking the fact that environmental 
conditions (such as the temperature and 
hydrometry)  vary during the growth of 
the snow crystal.  
3 Extrapolations 

Going beyond snowflakes one can 
explore other tessellations of the plane. 

It is well know that the plane is tiled 
either by hexagons, triangles, or squares. 
Snowflakes are well simulated by  
hexagonal-cell CA because of the 
structure of the water molecule, but we 
can imagine, even if they don’t exist in 
nature, molecules that would have 
triangular or square structures, and CA 
that would give three or four-fold 
symmetrical results. 

Triangular-cell CA are actually more 
complex than hexagonal-cell ones, 
because, first, the tiling triangles present 
themselves in two directions (while all 
hexagons are identical by translation) 
and secondly, because we may consider 
different neighbourhoods: either only the 
triangles that are adjacent, or also those 
that touch the peaks of the first triangle. 

Even taking the simplest 3-neighbours 
neighbourhood, triangular-cell  CA are 
disappointing, in the sense that they 
don’t give three-fold symmetry.  As a 
matter of fact, those three first 
neighbours have themselves two 
neighbours, and that leads to six 
branches, not three... Results are then 
comparable though not absolutely 
identical) to hexagonal-cell ones (Fig. 17, 
18). 

  
Fig. 17:  β=0.5  γ=0 

  
Fig. 18:  β=0.95  γ=0 

Square-cell CA are more promising. We 
can consider two types of 
neighbourhood:  four (von Neumann) or 
eight (Moore) neighbours.  

A CA model similar to Reiter’s one but for 
an orthogonal grid has been thoroughly 
examined by Zhao et alii [7]. 

Zhao favours the Moore neighbourhood, 
but the von Neumann one is not to be 
neglected. One can see dendrites appear 
as in the hexagonal model, but patterns 
encountered for higher values of β are 
rather different (Fig. 19, 20). 
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Fig. 19:  β=0.4  γ=0.003 

 

  
Fig. 20:  β=0.99  γ=0 

One advantage of the orthogonal grid is 
that we can play with the borders, by 
prolonging the process in the square 
equipped with a toric topology (Fig. 21), 
possibly with a different resolution (Fig. 
22). 

  
Fig. 21:  β=0.99  γ=0 

  
Fig. 22:  β=0.4  γ=0.003 

The Moore neighbourhood presents a 
problem which we have not encontered 
yet. A crucial feature of all real-value CA 
is the averaging of the values of the 
neighbourhood. In the cases of   
orthogonal, triangular and square von 
Neumann cells, all neighbours are 
adjacent, they share an edge with the 
considered cell, so their distance is the 
same, and the averaging is 
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straightforward: the sum of the values 
divided by the number of neighbours. But 
with the von Neumann neighbourhood, 
four neighbours are at the corners, so 
that their distance is larger than that of 
the four other neighbour. Zhao proposes 
a formula with a weighted averaging 
respecting this difference. 

However, this caution is not mandatory. 
Taking the sum of values and dividing by 
eight works just the same as the 
weighted  averaging.  

  
Fig. 23:  β=0.25 γ=0 

  
Fig. 24:  β=0.9 γ=0 

  
Fig. 25:  β=0.99  γ=0 

We encouter dendrites (Fig. 23), and 
patterns very similar to the hexagonal 
ones (Fig. 25), with a lot of other patterns 
where, in a way, dendrites join 
themselves (Fig. 24). 

Zhao affirms seeing secondary and even 
tertiary dendrites in some results, though 
it is not so clear, either looking at his 
pictures or ours. However, dendritic 
results show some resemblance with 
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pictures of actual crystals, namely those 
of ammonium bromate NH4Br. One could 
pursue this exploration with a 3D CA, of 
course.  

In conclusion, beyond the quest for 
snowflakes dendrites, real-value CA 
prove to be a valuable asset for 
generating emerging patterns. The notion 
of diffusion they simulate makes them 
close, though simpler, to reaction-
diffusion models which we know provide 
so many amazing patterns. 
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