
10th Generative Art Conference GA2007

 Page 1

Hypergraph-based Evolutionary Design System

E. Grabska, B. Strug, G. Ślusarczyk.

Faculty of Physics, Astronomy and Applied Computer
Science, Jagiellonian University, Reymonta 4, Cracow, Poland

e-mail uigrabsk}@cyf-kr.edu.pl, barbara.strug@uj.edu.pl,, gslusarc@uj.edu.pl

Abstract

This paper deals with applying evolutionary methods in computer aided design. The
design process is an iterative one consisting of several steps. It starts with a preliminary
or conceptual design, which is then analyzed or tested in order to find out which of its
elements must be redesigned or refined. The process of evaluation and optimization is
repeated until an acceptable solution is found. Since designing can be treated in
computer science as a search process, where all possible designs form a search space,
it is possible to use search techniques such as evolutionary ones.

As evolutionary search consists in evaluating and refining possible solutions, it can be
seen as analogous to a human design iterative process of analysis, testing and
optimization. Similarly to the refinement step in human design, in evolutionary search
designs to be transformed are determined according to their evaluation (fitness). The
refinement step is often performed not on actual solutions (phenotypes) but on their
coded equivalents (genotypes).

Since in design problems genotypes in the form of binary strings are very often
insufficient we propose to use a graph-based representation of genotypes which enables
us not only to express geometrical properties of an object but also its attributes (like
color, material etc.) and relations between object components.

In this paper we adopt hierarchical hypergraphs as they can represent an artifact with
both multi-argument relations and hierarchical dependence which are impossible to
express by other structures. The greatest advantage of this representation is its ability to
describe in a uniform way all types of relations and objects and to produce highly fitted
individuals.

Using hypergraphs in an evolutionary search requires the adaptation of traditional
evolutionary operators like cross-over and mutation. As the hypergraphs selected to be
transformed by the evolutionary operators at the subsequent stage of the evolution and
their structures are not known a priori the operator must be defined in a way which
allows for an "online" computation of new hypergraphs. Genetic operators working on
hypergraphs and the structure of an evolutionary design system is presented.

The method is illustrated by examples of floor-layouts generated by a house design
system, where structures of floor-layouts are represented by hypergraphs. In our
approach a cross-over operation exchanges subgraphs representing the functional

10th Generative Art Conference GA2007

 Page 2

areas with different internal arrangements, while mutation affects local and global
attributes as well as the graph structure (by adding or deleting subgraphs)

1. Introduction

The design process, computer aided or traditional, is an iterative one consisting of
several steps [1]. It starts with a preliminary or conceptual design, which is then
analyzed or tested in order to find out which of its elements must be redesigned or
refined. The process of evaluation and optimization is repeated until an acceptable
solution is found. Still, majority of computer aided design systems focuses on refining
parameters specifying design and optimizing it. They usually work on a single design at
a time. Since designing can be treated in computer science as a search process, with
all possible designs forming a search space, it is possible to use search techniques used
in other domains.

There is a number of search methods well established in computer science that can also
be used in the space of designs. [15]. One of them is an evolutionary technique. Instead
of one solution at a time a larger subset of the search space, known as a population, is
considered. As evolutionary search consists in evaluating and refining possible solutions
it can be seen as analogous to a human design iterative process of analysis, testing and
optimization [1,3]. Similarly to the refinement step in human design, which is based on
earlier analysis and testing, in evolutionary search designs to be transformed are
determined according to their evaluation (so called fitness). The refinement step is often
performed not on actual solutions (called phenotypes, in this paper - designs) but on
their coded equivalents (called genotypes).

In design problems genotypes in the form of traditionally used binary strings [1,4,11,14]
are very often insufficient as not only geometrical properties of an object has to be
represented but also its attributes (like color, material etc.) as well as relations between
object components.

The methods used in CAD problems like boundary rep resentations, sweep-volume
representation, surface representations or CSG (constructive solid geometry) [10,12,13]
allow only for the "coding" of geometry of an object being designed and do not take into
account the inter-related structure of many design objects i.e. the fact that parts (or
components) of an object can be related to other parts in different ways. Such a
structure is usually represented as a graph.

Different types of graphs have been used in this domain, for example composition
graphs [6,7]and hierarchical graphs, in which relations such as being a part of or being
included in were allowed [8]. An evolutionary design system based on these types of
graphs was presented earlier in [18]. These graphs proved useful in different domains
of design [2], but they lack the ability to represent structures in which more than two
elements are related by the same relation. Such a possibility is given by a so called
hypergraph. But traditional hypergraphs are in turn unable to represent hierarchical
relations. Therefore in this paper we adopt hierarchical hypergraphs to evolutionary
design as they can represent an artifact with both multi-argument relations and
hierarchical dependence which are impossible to express with the use of traditional
graph structures.

10th Generative Art Conference GA2007

 Page 3

Using hypergraphs as a representation in an evolutionary search requires the adaptation
of traditional evolutionary operators like cross-over and mutation. As the hypergraphs
selected to be transformed by the evolutionary operators at the subsequent stage of the
evolution and their structures are not known a priori the operator must be defined in a
way which allows for an "online" computation of new hypergraphs. Thus the operator
has to be specified by an algorithm rather than a set of rules.

An example of the application of this method is shown and some advantages and
disadvantages of this approach as well as possible future research directions are briefly
discussed. The method is illustrated by examples generated by a design system based
on the proposed method.

2. Representation

Hypergraphs (HyGs) are a generalization of traditional graphs. They consist of nodes
and hyperedges. What makes them different from standard graphs is that hyperedges in
HyGs can connect an arbitrary number of nodes. The hyperedges are used to represent
both relations and geometrical objects.

A hyperedge in a hypergraph may thus represent a geometrical object or a relation
between a group of objects. These hyperedges are called object hyperedges and
relational hyperedges, respectively.

Moreover in a hierarchical hypergraph a hyperedge may also be used to hide certain
details of a designed object that are not needed at a given stage of design or to group
object having some common features (geometrical or functional). Hyperedges that do
not represent actual geometric entities or relations but are used to represent a
hierarchical structure are called hierarchical

An example of a hierarchical hypergraph and a corresponding floor layout and layout
design diagram are depicted in fig.1c, 1a and 1b, respectively. The hyperedges depicted
as rectangles are object hyperedges, while the oval ones represent relational
hyperedges. Nodes are depicted as small black filled circles.

Nodes and hyperedges in hypergraphs can be labelled and attributed. Labels are
assigned to nodes and hyperedges by means of node and hyperedge labelling functions
respectively, and attributes - by node and hyperedge attributing functions. Attributes
represent properties (for example size, position, colour or material) of a component
represented by a given hyperedge.

A labelled attributed hierarchical hypergraph may represent a potentially infinite number
of designs having the same structure. To represent an actual design we must determine
an instance of a hypergraph. An instance of a hypergraph is a labelled attributed
hierarchical hypergraph. where to each attribute a value of the attribute domain has
been assigned.

As such a hypergraph defines only a structure of a design, to create a visualisation of an
object an interpretation is necessary. The interpretation determines the assignments of
geometrical objects to object hyperedges, correspondence between relational

10th Generative Art Conference GA2007

 Page 4

hyperedges and sets of relations between objects (components of a design). The
geometry of these objects may be internally represented by means of any known
representation that allows for easy application of similarity transformations. Geometrical
objects used depend on the domain of application, for example when designing a house
the set of geometrical objects could contain some primitive objects, or some predefined
domain-oriented objects like doors, windows, stairs and other parts of a house and a set
of relations could consist of an adjacency and accessibility relations.

Fig. 1 A floor layout, a layout diagram and a corresponding hypergraph

A floor layout shown in fig.1a is the one of many possible designs the hypergraph from
fig. 1c can represent. The layout was obtained after choosing an instance of this
hypergraph and then interpreting it.

2 Evolutionary Design System

As it has been mentioned, a binary coding of design solutions is very often insufficient.
This paper proposes to replace this standard coding by a hypergraph representation. To

10th Generative Art Conference GA2007

 Page 5

use such a representation in an evolutionary design system a number of elements of this
system must be defined.

Firstly a method of initialization must be chosen. One of the possibilities is to generate a
population of random hypergraphs consisting of nodes and hyperedges from a given set.
Although this method is easiest to implement in any design system it is usually very slow
in producing acceptable or feasible designs as many designs are rejected. The other
possible mechanism is known as a graph grammar and it has been successfully used in
many domains to generate graphs [17]. Such a grammar describes all syntactically
correct solutions, for example layouts.

It also possible to allow the user to generate an initial population of hypergraphs or to
use hypergraphs generated by another program. Hypergraphs can be also generated
using operations performed on hypergraphs [5].

2.1 Evolutionary graph operators

The genetic operators (usually a crossover and a mutation) constitute the next element
of an evolutionary algorithm. As in this paper a nonstandard representation is used, new
genetic operators have to be proposed.

The hypergraph based equivalent of a standard crossover operator requires establishing
subgraphs that would be then exchanged. When a crossover is performed on two
selected hypergraphs, H1 and H2 the subgraphs h1 and h2, respectively, are selected in
these hypergraphs. Then each subgraph is removed from a hypergraph and inserted
into the second one. As a result two new hypergraphs are generated. However there
may exist hyperedges connecting nodes belonging to a chosen subgraph with nodes
which do not belong to it. Such hyperedges are called embedding of a subgraph. So
removing a subgraph from a graph and inserting it into another requires a method
allowing for proper re-connection of these hyperedges. The underlying idea is that all
hyperedges should be re-connected to nodes similar to those they were connected to in
the hypergraph from which they were removed. There is probably more than one
possibility of defining nodes' similarity.

In this paper a similarity-like relation is used. This relation is called {\it homology}. The
name was inspired by the gene homology in biology. This relation is responsible for
establishing subgraphs of selected hypergraphs that are homologous - or similar in
some way- and thus can be exchanged in the crossover process. The definition of this
relation is based upon the assumption that both hypergraphs selected for crossover
code designs consisting of parts having similar or even identical functions (even if these
parts have a different internal structure, material or/and geometrical properties).

In other words both hypergraphs are assumed to belong to the same class. The
homology relation is defined on three levels that differ in terms of requirements put on
hypergraphs to be in the relation. The weakest of these relations is called context free
homology and it only requires two subgraphs to have the same number of object
hyperedges with identical labels. It is the least restrictive of the three relations and it

10th Generative Art Conference GA2007

 Page 6

allows for higher variety of new hypergraphs to arise from a crossover but at the same
time it is able to produce the least meaningful hypergraphs or, in other words, the most
"disturbed" ones.

On the opposite side the strongly context dependent homology is defined. It requires the
top-level hyperedges in both subgraphs to have not only identical labels but also to have
identically labelled ancestors up to the top-most level of the hypergraph hierarchy.
Nevertheless the internal structure of a hyperedge and its attributes are not taken into
account so even exchanging strongly homologous subgraphs may still produce
considerably different new hypergraphs. When the context free relation is too weak, i.e.,
it results in too many hypergraphs being unacceptable (rejected by fitness function) and
the strong homology is too restrictive or results in designs that are very similar or even
identical to its parents the weakly context dependent homology may be useful. It takes
into consideration direct ancestors of a given hyperedge but not any ancestors of higher
levels in the graph hierarchy.

Formally, a crossover operator cx is defined as a 6-tuple (H1, H2, h1, h2, T, U), where H1,
H2, h1, h2 are hierarchical hypergraphs and their subgraphs, respectively. The crucial
elements of this operator are T and U that are called embedding transformations, i.e.,
they describe how hyperedges of the embedding are to be re-connected. They are sets
of pairs of the form (n, n'), where n denotes a node to which a hyperedge was assigned
originally and n' - the one to which it will be assigned in a new hypergraph.

It is important to notice however that the hypergraphs to be crossed over and their
respective subgraphs are selected during the execution of the evolutionary algorithms so
the embedding transformations can not be defined a priori (as it is in graph grammars
[6,17]. Hence probably the most difficult problem is to find a method allowing us to
establish these transformations. The algorithm generating these transformations
requires only the subgraphs being exchanged to be homologous. For each level of
homology a crossover operator is defined, thus we have three crossover operators
having different levels of context dependence.

10th Generative Art Conference GA2007

 Page 7

acc

adj

accaccaccacc

accacc

adj

adj
adjadj

adj

adj

adjK

Be

E W

A

H GLr

Be

L

S

1
1

1

2

2

33

4

4

Fig. 2 A hypergraph H1 representing a floor layout with selected subhypergraph h1

acc

adj

accaccaccacc

acc

adj

adj adj
adj

adj

adj

adj

K

Be

E W

A

H G

Lr

Be

L

S

BeBe accaccacc

adj

adj

1

1

1

2

33
3

4

4

Fig. 3 A hypergraph H2 representing a floor layout with selected subhypergraph h2

10th Generative Art Conference GA2007

 Page 8

acc

adj

accaccaccacc

acc

adj

adj
adj

adj

adj

adj

adjK

Be

E W

A

H GLr

Be

L

S

BeBe accaccacc

adj

acc
1

2

3

4

1
1

4

33

Fig. 4 A hypergraph H'1 representing a floor layout resulting from cross-over operation

The idea behind the algorithm that generates automatically such an embedding
transformation is to preserve the relations between the object hyperedges as much as
possible i.e. to connect each hyperedge removed from one graph to a hyperedges in the
second graphs that represent the same or similar object (i.e has the same label).

acc

adj

accaccaccacc

acc

adj

adj
adj

adj

adj

adj

adj

K

Be

E W

A

H G

Lr

Be

L

S

adj

1

2

2

33

4

1

1

4

4

Fig. 5 A hypergraph H'2 representing a floor layout resulting from cross-over operation

10th Generative Art Conference GA2007

 Page 9

Example
Let us consider a house design system, where structures of floor-layouts are
represented by hypergraphs. These hypergraphs are determined by a functional graph
in which all required modules, represented by subgraphs, are defined. In this example
the required functional modules include: a sleeping area, a living area and a garage.
Other functional modules usually used in a house design include a communication area,
a cooking area and sanitary one. In our example these functionalities are contained in
other modules.

Applying a cross over operation we can exchange subgraphs representing the same
functional areas: for example two living areas or two sleeping areas or just hyperedges
representing single rooms that may have different internal arrangements. In fig. 2 and
fig. 3 two hypergraphs, H1 and H2, representing layouts of two apartments (shown in fig.
6a and 6b, respectively) are depicted. Object hyperedges represent components of the
apartment, while relational hyperedges, labelled acc and adj, represent accessibility and
adjacency, respectively. The nodes connected by hyperedges are numbered and they
denote walls of the rooms. For reasons of clarity in all figures numbers of nodes are
shown only for nodes participating in crossover operator.

The subgraphs selected in H1 and H2,denoted h1 and h2, respectively, are surrounded by
a dashed line. In this example a subgraph h1 consists of a hierarchical hyperedge
labelled S, representing the sleeping area, and all its descendants (hyperedges and
nodes assigned to them). In hypergraph H2 a homologous subgraph h2 was selected,
that is one with the same label S, marked as the dashed oval in fig. 3.

The first step of crossover consists in removing selected subgraphs and their respective
embeddings. The embedding of subgraph h1 in H1 consists of four relational
hyperedges: a hyperedge labelled acc which connected node 4 of hyperedge labelled
Be in h1 and node 2 of hyperedge labelled Lv in H1 - h1, and three relational hyperedges
labelled adj which connect nodes assigned to object hyperedges of h1 with nodes
assigned to object hyperedges of H1 - h1.

L

K

B B

H G

E W
L

K

B
B

H G

E W

B

L

K

B B

H G

E W
L

K B
B

H G

E W

B

a b

c d

Fig. 6 a, b, c, d: Floor layout diagrams represented by hypergraphs from figs. 2,3,4 and 5.

10th Generative Art Conference GA2007

 Page 10

Then the subgraph h2 is put into the hypergraph. If an object hyperedge is connected to
the object hyperedge with the same relation as in the source hypergraph the relation is
preserved. Otherwise the relation is taken from the destination hypergraph. The
hypergraphs resulting from crossing over the hypergraph depicted in fig.2 with the
hypergraph in fig. 3 are shown in fig. 4 and fig. 5. The layouts represented by these
hypergraphs are depicted in fig. 6c and 6d, respectively.

2.2 Mutation

As the second genetic operator mutation is usually used. This operator is much easier to
be defined for hierarchical hypergraph-based representation.

The mutation operators may be divided into structure changing mutations and attributes
changing ones. The second group can be further divided into local and global mutation
operators.

The attribute changing operators change values of attributes of a selected object
hyperedge (local mutation) or all object hyperedges (global mutation). As a result it
changes geometrical properties of objects assigned to this hyperedge or hyperedges by
the interpretation. However it is also possible to define mutation operators introducing
structural changes to an artifact being designed which would not be possible using a
binary representation. Such mutations could consist in adding or removing hyperedges
from a hierarchical hypergraph. In the layout design system these mutations may for
example result in adding or removing rooms.

So while crossover allows us to generate artifacts being combinations of previously
existing designs, mutation may introduce wholly new elements into the object being
designed.

3. Conclusions

Applying evolutionary methods to the design domain poses many problems. One of the
main problems concerns representing designs in such a way that they can be easily
modified during an evolutionary process. In the proposed approach a hierarchical
hypergraph is used as a genotype and equivalents of standard genetic operators are
defined on hypergraphs. Hypergraph-based operators are more complex than standard
binary ones but we think that the benefits of using a hypergraph representation
(possibility of coding multiple-argument relationships between components of an artifact
and ability to introduce structural changes) compensate for it. The strongest point of a
hypergraph-based representation is its ability to represent in a uniform way all types of
relations and objects and to produce highly fitted individuals.

The use of graph grammars makes it possible to generate an initial population of graphs
representing designs belonging to a desired class. Thus the graph grammar and fitness
function are the only elements of the evolutionary design system that has to be changed
in order to design different objects.

In this paper we evolve hypergraphs representing the structure of the whole design. In
future we plan to run evolutionary process separately for each functional module. Then

10th Generative Art Conference GA2007

 Page 11

the resulting solutions could be combined into one hypergraph structure, which can be
farther evolved. Such an approach leads to a hierarchical evolutionary algorithm.

References

[1] P. J. Bentley, Generic Evolutionary Design of Solid Objects using a Genetic Algorithm, PhD thesis,
UCL London 1), 3-38, (1997).
[2] Borkowski A., Grabska E., Nikodem P, and Strug B., Searching for Innovative Structural Layouts by
Means of Graph Grammars and Evolutionary Optimization,, Proc. 2nd Int. Structural Eng. And Constr.
Conf, Rome, (2003).
[3] De Jong K, Arciszewski T, and Vyas H, An Overview of Evolutionary Computation and its Applications,
in. Artificial Intelligence in Engineerig,9-22, Warsaw, (1999).
[4] D.E.Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA,
Addison-Wesley, (1989).
[5] E. Grabska. A. Lachwa, G. Slusarczyk, K. Grzesiak-Kopec and J. Lembas; Hierarchical Layout
Hypergraph Operations and Diagrammatic Reasoning, Machine GRAPHICS and VISION, (in print)
[6] E.Grabska,Theoretical Concepts of Graphical Modelling. Part one: Realization of CP-graphs. Machine
GRAPHICS and VISION, 2(1993).
[7] Grabska, E.. Graphs and designing. Lecture Notes in Computer Science, 776 (1994).
[8] E.Grabska, W. Palacz, Hierarchical graphs in creative design. Machine GRAPHICS and VISION,
9(1/2), 115-123. (2000).
[9] Hajela P. and Lee, J, Genetic Algorith in Truss Topological OpJournal of Solids and Structures vol.32,
no 22 , 3341-3357, (1995).
[10] Hoffman, C. M.,Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, San Francisco,
CA, (1989).
[11]Holland, J. H. Adaptation in Natural and Artificial Systems, Ann Arbor, (1975).
[12] Mantyla, M.,An Introduction To Solid Modeling, Computer Science Press, Rockville,MD,vol.87,
(1988).
[13] Martin, R R and Stephenson, P C Sweeping of Three-dimensional Objects? Computer Aided Design
Vol 22(4) (1990), pp. 223-234.
[14] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin
Heidelberg New York (1996).
[15] Michalewicz, Z. Fogel, D. B.: How to Solve It: Modern Heuristics.. Springer-Verlag, Berlin Heidelberg
New York (2000).
[16] P. Nikodem and B. Strug. Graph Transformations in Evolutionary Design, Lecture Notes in Computer
Science,vol 3070, pp. 456-461, Springer, 2004.
[17] Rozenberg, G. Handbook of Graph Grammars and Computing by Graph. Transformations, vol.1
Fundations, World Scientific London (1997)
[18] B. Strug. Hierarchical Representation and Operators in Evolutionary Design, Parallel Processing and
Applied Mathematics (PPAM 2005), LNCS vol 3911, pp. 447-454 Springer 2006.

