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Abstract

Non-linear Iterated Functions Systems (IFSs) are very powerful mathematical
objects related to fractal theory, that can be used in order to generate (or model)
very irregular shapes. We investigate, in this paper, how an interactive evolutionary
algorithm can be efficiently exploited in order to generate randomly or interactively
artistic “fractal” 2D shapes. This algorithm has been build up in an easy-to-use
interface ArtiE-Fract with advanced interactive tools.

1 Introduction

Fractal images have been considered as interesting artistic objects as they combine com-
plexity and some ”hierarchical” structure. The complete mathematical structure that
supports these pictures provides indirect access to their characteristics and, therefore,
allows shape manipulation and exploration. ArtiE-Fract is a user friendly software for the
creation of fractal images based on an interactive evolutionary algorithm.

Evolutionary algorithms (EA) are nowadays known as powerful stochastic optimisation
techniques but can also be used in order to generate artistic pictures. The appropriate
tool is interactive EA, i.e. an EA where the function to be optimised is partly set by the
user, in order to optimise something related to the ”user satisfaction”. This interactive
approach is not new: Karl Sims [15] has extensively shown the power of the method in the
framework of computer graphics (see also [1]). We extend this approach to the exploration
of a fractal images space and improve its flexibility with help of advanced interactive tools
related to the specific fractal model we use.

ArtiE-Fract evolves a population of fractal images, and displays it via an interface. More
precisely, these fractal images are encoded as sets of contractive non-linear 2D functions
(affine and non-affine), defined either in Cartesian or polar coordinates. Each set of these
contractive functions represents an IFS (Iterated Functions System), to which a particular
2D image, its attractor, is associated.

In ArtiE-Fract the interaction is twofold:

— a classical interaction (as in [16]): the user guide the EA by giving notations to each
image of the population via the main window that displays the whole population.
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— a direct interaction: images can be manipulated via a specialized window and modified
individuals can be added or replaced in the current population (this is a sort of interactive
”local” deterministic optimisation). A large set of geometric, colorimetric, structural
modification are available. Moreover, due to the IFS model, some control points can
be defined on the attractor images (fixed points) that help to distort the shape in a
convenient, but non trivial, manner.

The ArtiE-Fract interface has been carefully designed in order to give access to a wide
variety of parameters. This, together with the two particularities of giving access to
unusual fractal images (non-linear IFS), and allowing the user to interfere at any time
with the evolutionary process, make of this software a flexible and user-friendly artistic
image generation tool.

This paper is organized as follows: 1F'S theory and attractor’s construction are described
in section 2 and functions classes (affine, mixed, polar) are detailed in section 3. In section
4, ArtiE-Fract interactive capabilities are developed.

2 IFS theory

Iterated Functions Systems theory is an important topic in fractals, and provides powerful
tools to investigate fractal sets. The action of systems of contractive maps to produce
fractal sets has been considered by many authors (see for example [10, 3, 4, 8]), and most
fractal image compression techniques are based on IFSs [2, 11].

An Iterated Functions System (IFS) U = {F, (wy)n-1,. n} is a collection of N functions
defined on a complete metric space (F,d).

Let W be the operator defined on the space of subsets of F"

VK c F, W(K)= |J wa(K)

ne{l,..,N}

Then, if the w, functions are contractive (the corresponding IFS is then called contractive
IFS), there exists a unique set A such that: W(A) = A. A is called the attractor® of the
IFS.

The uniqueness of a contractive attractor is a result of the Contractive Mapping Fixed
Point Theorem for W, which is contractive according to some distance (the Hausdorff
distance, see [14]).

Figure 1 displays the Sierpinski triangle. It is the attractor of an IFS made of three
affine (see 3.1) functions, all having a scaling factor of 1/2. This attractor has a fractal
dimension of 1.66.

LAn IFS attractor A can be considered as a ”fractal” set because the relation W(A) = A reads
Uw;i(A) = A, meaning that A is exactly the union of reduced / transformed copies of itself (self similarity
principle).
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Figure 1: The Sierpinski triangle and its three functions

From a computational viewpoint, attractors can be generated according to two techniques:

e Deterministic method: a straightforward implementation that simulates the con-
vergence of a sequence of sets {S,}: Spi1 = W(S,) = J; wi(Sy,) from any initial set
So (see figure 2).
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Figure 2: Deterministic construction of the Sierpinski triangle: from any initial image (left),
the sequence S, converges to the Sierpinski triangle. Note that the Sierpinski triangle
is invariant with respect to W (last row).

e Stochastic method (toss-coin): it has been shown that the following point se-
quence: Z,.; = w;(z,), ¢ being randomly chosen in {1..N}, starting from any of the
w; fixed points, provides an approximation of the real attractor of O.

The stochastic method is usually preferred due to its computational efficiency and is used
in ArtiE-Fract.

The colors of the attractor are set according to the number of time each pixel of the attrac-

tor is hitted by the toss-coin sequence. It is related to the invariant measure associated
with the IFS (see [4]).
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3 Contractive functions classes

Usual attractor images and compression techniques are based on affine IFS, however our
recent works on the topic tend to prove that non affine IFS (mixed or polar), i.e., IFS
that are not anymore restricted to be made of affine functions, are interesting in many
applications (see [17, 12]) and moreover from an artistic viewpoint.

3.1 Affine functions

In the case of affine IFS, each contractive affine map w; of U is represented as:

wi(x,y):[g 2][§]+[e]

Affine functions are combinations of simple geometric transformation: scaling, symme-
tries, rotations and translations. Their contractance factor is directly calculated as the
maximum of the module of the eigen values. Affine IFS are thus easy to handle, which
explains their success.

Figure 3: Examples of affine IFS attractors

3.2 Mixed functions

We use the term mixed IFS [13] in order to emphasize the fact that the w; functions
are not anymore restricted to be affine?. In this case, the first point to be addressed is
the one of finding an adequate representation. A natural one is based on trees (see [14]);
the w; functions are built from a set of basic operators (+,—,%,/, pow, log, exp, sin, cos,
...), a set of variables (z and y), and a set of constants. In the following examples, the
constants belong to [—1, 1].

2In the literature related to IFSs, the great majority of papers consider affine IFS, so that usually
when “IFS” are mentioned, they are often implicitly supposed to be affine.
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Another difficult problem for mixed functions is the contractance check for each w; in
order to select contractive IFSs. On the contrary to affine functions, this verification is
not straightforward, and is in fact computationally intractable. We thus rely on some
heuristics that reject strongly non-contractive functions. The simplest way to do that
(see [12] for details) is to verify the contractivity on sample points.

Figure 4: Examples of mixed IFS attractors

3.3 Polar Functions

In order to have a better control on the contractance, a subclass of mixed functions is
introduced: polar functions. The w; are encoded in polar coordinates centered on a point
P; as (th represents the hyperbolic tangent):

th(kF(p,0)) + 1
w;(p,0) = 2
G(p,0)

p

F(p,0) and G(p,0) are non-linear functions which can be represented with a tree (as
for mixed functions). The factor w is always < 1 and therefore ensures the
convergence of these functions toward the central point P; (see [14]).

Contractance tests are still necessary (convergence toward a point does not ensure con-
tractance), but the search space of polar contractive functions is less sparse that the one
of contractive mixed functions (see [7]).

Figure 5: Examples of polar IFS attractors
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4 ArtiE-Fract

ArtiE-Fract is based on an interactive EA designed to help the user to explore the space
of fractal shapes encoded with the previous IFS models.

4.1 Interactive evolutionary algorithm

EAs and can be considered as a computer implementation of a Darwinian evolution model.
Their main characteristic is that they manipulate populations of individuals (that rep-
resent solutions, points of a search space, programs, rules, images, signals, etc ...), and
involve a set of operations (selection, mutation, crossover) applied randomly to each indi-
vidual, in order to simulate a sequence of generations. If correctly designed, this dynamic
stochastic process concentrates the population onto the global optimum of the search
space.

EAs are useful for other purposes than pure optimisation and, for example, for the gener-
ation of artistic pictures. They act as an exploration tool in an image space, the implicitly
optimised function being the “user’s satisfaction.” In ArtiE-Fract, the fitness function is
made of two parts:

e an “internal” fitness, that depends only on the characteristics of the individual which
represents an IFS: density, fractal dimension, brightness, contrast and lacunarity
(provides informations about the distribution of the density of the attractor).

e an “external” fitness, which is set by the user during the run. Marks range from —1
(worst) to 6 (best), see figures 6 and 7.

The global fitness, that the algorithm maximises, is simply the sum of internal and external
fitnesses.

The EA stops at each generation allowing user interaction: notations, direct modification,
or a new generation run command. Figure 6 shows the main display window of ArtiE-
Fract: it presents all the attractors of the population, so that the user can see them and
eventually rank or capture them to make its own modifications. Here individuals 0, 1, 4,
7 received a good mark and 3 a negative one.

4.2 Genetic operators

Default parameters and operators are set in order to allow an efficient exploration of the
image space. However the user has access to the majority of these parameters via some
advanced parameters window. Because of the complexity of the individuals (IFS), there
are many different operators which act at two levels:
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Figure 6: Display of ArtiE-Fract with various user’s ranking. The population contains 8 individ-
uals (with their corresponding number of functions of each type {affine, mixed, po-
lar}): zero {3,0,0}, one {1,1,0}, two {0,2,0}, three {2,0,1}, four {2,0,0}, five {5,0,0},

six {2,0,0}, seven {1,1,0}.

at the IF'S level: change the IFS structure by adding, deleting, exchanging a func-
tion, move one or more fixed points, change the toss-coin probabilities, modify the
palette (it is composed of control points interpolated by splines or linear curves),

rescale, center.

at the function level: gaussian mutation of constants, tree mutations (operator <

variable <+ constant) and crossover, combination of functions.

Figure 7 displays one generation step for the population of figure 6: four new IF'Ss were
obtained (top images: 0 - 3) from four parents (bottom: 4 - 7). A polar function was
added to individual 0, a fixed point of individual 1 was moved and one function of each

individual 6 and 7 was mutated to produce respectively individuals 2 and 3.

4.3 The user interaction tools

The user interaction tools of ArtiE-Fract are globally the same as the genetic operators de-
scribed before, but are activated and controlled directly by the user: zooming, translation,
change of the functions composition of the IF'S, displacement of fixed point, modifications
of the color palette. The user can pick up an individual, modify it according to his taste,
and finally replace an individual or add it to the current population. This modified image

may also be saved for further use.
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Figure 7: Evolution of the population of figure 6

The translation of a fixed point may have non trivial effects on the attractors shapes
Figure 8 shows its impact on a simple IFS made of two affine functions.

Figure 8: Effect of fixed point displacement for a two affine functions IFS: the external fixed
point is moving around the central one (fixed point are white dots).

Other tools available are:

a function displayer so that the user may visualise the selected function in order to
access and modify it directly as a formula. It also provides information about the

distribution of a function inside the current population.

an initial population generator that provides many options: type and number of
functions, specification of the tree components, color palette, attractor density.

At any time, the whole population can be saved and loaded again.
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5 Conclusion

Figure 9 displays a sample of fractal images that may be generated with ArtiE-Fract.
Although it is still under development (other interactive capabilities, new fractals models),
ArtiE-Fract, in its present version, can already be considered as a flexible and efficient
exploration tool of TF'S fractal shapes. Experiments with some designers and advertisers
tend to prove that it is an interesting tool for numerous artistic applications.

Figure 9: Gallery
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