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Abstract: 
According to the “Memory Consolidation Theory of Dreaming”, dream exists as a way to process and 
consolidate information that we have acquired during our waking lives. In that perspective, it’s right to 
say that minds that produce dreams are also minds capable of learning. If we include in the category 
of capable of learning, not only living creatures, but also artificial systems, we can explore the 
consequences of those systems being able to dream as well, and, most interestingly, what do they 
dream about. 
If machines can dream, they can also be creative, and even produce art. Deep Belief Networks are 
artificial systems Inspired in the brain, and capable of learning representations of data with multiple 
levels of abstractions. These methods have dramatically improved the state-of-the-art in speech 
recognition, visual object detection, and many other domains such as web search and genomics. 
These artificial minds are composed of multiple processing layers, much like how visual cortex of 
humans are structured. One of the remarkable properties of the learning algorithm called “wake-
sleep” [1] used to train these systems is that it has to have a “dreaming” period. This dreaming period 
is necessary for effective learning, and it’s when the neural network generates signals from within, 
without any external input. An interesting analogy with the psychological theory. 
We introduce to the reader how these artificial neural networks are structured, and how they are able 
to learn images hierarchically within they many layers. Then, following the steps revealed by Google 
Scientists' “Inceptionist” blog post [2], we explore how we can probe into their dreams, after being 
trained with million of photographs, and show that it hallucinates fantastic realms, of bizarre 
and psychedelic variations of reality (figures). The aesthetics and creativity extent of such machine 
dreams are discussed in the paradigm of generative art. Interpreting each dream as one of the 
endless expressions realized by the particular artificial mind's anatomy (neural network topology) and 
experience (trained images), recognizable as its particular vision of the world as has been shown to it. 

 
Example of generative dreams: people and cars (left); animal forms (right). 
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Abstract 
According to the “Memory Consolidation Theory of Dreaming”, dream exists as a way to process and 
consolidate information that we have acquired during our waking lives. In that perspective, it is right 
to say that minds that produce dreams are also minds capable of learning. If we include in the 
category of capable of learning, not only living creatures, but also artificial systems, we can explore 
the consequences of those systems being able to dream as well, and, most interestingly, what do 
they dream about. 
If machines can dream, they can also be creative, and even produce art. Deep Belief Networks are 
artificial systems inspired in the brain, and capable of learning representations of data with multiple 
levels of abstractions. These methods have dramatically improved the state-of-the-art in speech 
recognition, visual object detection, and many other domains such as web search and genomics. 
These artificial minds are composed of multiple processing layers, much like how visual cortex of 
humans are structured. One of the remarkable properties of the learning algorithm called “wake-
sleep” (Hinton, Dayan, Frey, & Neal, 1995) used to train these systems is that it has to have a 
“dreaming” period. This dreaming period is necessary for effective learning, and it is when the neural 
network generates signals from within, without any external input. An interesting analogy with the 
psychological theory. 
We introduce to the reader how these artificial neural networks are structured, and how they are able 
to learn images hierarchically within their many layers. Then, following the steps revealed by Google 
Scientists' “Inceptionist” blog post (Mordvintsev, Olah, & Tyka, 2015), we explore how we can probe 
into their dreams, after being trained with million of photographs, and show that it hallucinates 
fantastic realms, of bizarre and psychedelic variations of reality (figures). The aesthetics and 
creativity extent of such machine dreams are discussed in the paradigm of generative art. Interpreting 
each dream as one of the endless expressions realized by the particular artificial mind's anatomy 
(neural network topology) and experience (trained images), recognizable as its particular vision of the 
world as has been shown to it. 

 How to Build an Artificial Mind 
They say that when the apprentice surpasses the master, then the later has fulfilled his duty as a 
teacher, and reached his greatest achievement. In that sense, one can say that mankind greatest 
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achievement is about to come when we are able to build machines smarter than us. What the 
prominent futurist Ray Kurzweil (Kurzweil, 2005) calls the “singularity”, a point around 2045 when 
machine intelligence will be infinitely more powerful than all human intelligence combined. 
 
An artificial mind exhibiting general intelligence is yet 30 years ahead, but advances in computer 
science has led to remarkable progress in artificial systems capable of performing tasks likewise or 
better than humans. 
 
One of these capabilities, which we are going to explore in this paper, is visual recognition (object 
classification), and its artistic dual: visual creativity. Building a machine capable of identifying 
hundreds of classes of images is not a small feat, and in fact it took years of the most brilliant 
scientists, as well as good progress in hardware performance to finally produce some real world 
applications. 
 
Errore. L'origine riferimento non è stata trovata., Errore. L'origine riferimento non è stata trovata., and Errore. 
L'origine riferimento non è stata trovata., demonstrate some incredible capabilities of such systems by 
correctly labelling the images. Those examples were taken from the online “Image Identification 
Project” from Wolfram Research, available at www.imageidentify.com. 
 

 

 
 

Figure 11 "coupe" 

 
 Figure 12 "double bass" 

 

Figure 13 "grey wolf" 

 
One does not approach this kind of problem, as would otherwise with other software engineering 
tasks. It is impractical for someone to explicitly program the rules of image interpretation that will 
allow the machine to differentiate between an image of a “dolphin” and a “tree”. Thousands of 
shapes, colours, forms, shades, poses, all intertwined and interrelated in extremely complex ways 
defines the boundaries of the difference between a “dog” and a “cat”. 
 
Instead, scientists approach this problem by building an artificial brain capable of learning. Then, they 
feed this knowledge-hungry empty brain with thousands of training examples, i.e. associations of 
images with their corresponding labels, e.g. examples of “dogs”, and examples of “dolphins”. If the 
brain learns well, it will successfully tell the correct answer the next time it sees an image of a “dog”, 
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even if it has never seen that particular dog before. That is pretty much the way you can tell that 
something is a tree even if is the first time ever you’re ever seen that particular tree. The reason you 
can do it is because you have been exposed to countless different variations of trees before, so you 
know what kinds of patterns are unique signatures of trees. 
 
The mathematical model scientists are using for image classification are the so-called “neural 
networks”. Heavily inspired in their biological counterparts, they are beautiful abstractions that are 
helping us not only to build fantastic applications, but also to understand better ourselves. 

 The Artificial Neuron 
When building an artificial mind, if we want to be inspired by biology, that is, the human brain and 
how from billions of neurons and trillions of synapses emerges intelligence, then is reasonable to 
focus on the functional aspects of the neurons and the brain – i.e. the workings in terms of 
information processing, rather than modelling specifics to the biological substrate. 
 
With that perspective, one can say Warren McCulloch and Walter Pitts introduced the pioneer work in 
artificial neural networks in 1943 (McCulloch & Pitts, 1943). They proposed a mathematical model for 
the neuron. In their model, the neuron is an information-processing device that takes signals from 
other neurons connected to it through synapses and produces an output signal of activation, which 
can be -1 or 1, inactive or active respectively. 
 
The synapses themselves encode the amount of “inverse-resistance” of signal as an amount called 
weight, which is valued between 0 and 1, full-resistance (no signal) and zero resistance respectively. 
The reason the weights encode the inverse-resistance is because it makes calculations simple. 
 
Finally, the body of the neuron, takes all input signals, multiplies by their respective weights, sums, 
and decides whether or not it passes a certain threshold (specified by the neuron). If it does, then it 
fires a positive 1 signal, otherwise, it fires -1. Figure 14 depicts graphically the McCulloch-Pitts model. 
Equation (1) formalizes the artificial neuron processing. 
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Figure 14: model of McCulloch-Pitts neuron 

࢟ = ൞   ૚, ෍ ࢐ࢃ࢐ࡵ ≥ ࢀ
ࡺ

,ୀ૚−૚࢐ ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕
  (1) 

 The Memorable Machine 
One cannot learn if one cannot remember. Our neural network must be able to be exposed to training 
examples and then remember patterns to recall them the next time it sees a real example. 
Traditionally, the memory in the brain works much differently than memory in your computer, the key 
distinction is on how the information is retrieved. In your computer, data is addressable, and one can 
look up the data if one knows the address location of the data. In your brain, on the other hand, memory is associative, and therefore accessed by parts of the original content, i.e. in order for you 
to remember something, you need to start by something else that is associated with the former. Think 
about how you can remember an entire song by just initiating with the first word, or a location by 
experiencing the same smell. The brain stores information in a way that makes it easy to access by 
using a subset of that original information. 
Let’s introduce some interesting mathematics that shall be useful to have a better sense of what we 
are trying to achieve in the next sections, starting with the Hopfield network. Popularized by John 
Hopfield in 1982 (Hopfield, 1982), a Hopfield Network is a mathematical structure that can be 
implemented in a computer, which exhibits the property of information storage and retrieval using 
associative memory. 
Each neuron in a Hopfield network is a McCulloch-Pitts neuron; also, on top of processing 
information, they also have state, in the form of a property of “excitement”, specifying if that particular 
one is “active” or “inactive”. This property is modeled as a number that can have a value of -1, for 
inactive, and 1, for active. 
Finally, each neuron in the Hopfield network is connected to all other neurons thru the synapses both 
for input and output. With the additional constrain of being symmetric, that is a synapse from neuron 
A to B always have the same weight as the synapse from B to A. 
The network updates itself throughout time, by following the McCulloch-Pitts signal processing, and 
setting their activation state with the resulting output. 
The collective (binary) information of all neurons activations is what the network is “thinking about” 
(the pattern). One interesting property of the network is that it converges to stable configurations of 
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low energy. If you start “near” a low energy pattern 
synchrony with the pattern – after some cycles of update, the network will eventually converge to a 
low-energy attractor pattern and stabilizes there. This is, in essence, associative recall.
formalizes exactly what we mean by measure of energy.

ࡱ = − ૚૛ ෍ ࢐࢙࢏࢙࢐࢏ࢃ
࢐ ࢏

൅ ෍ ࢙࢏ࢃ
࢏

Where ࢏࢙ is the state of the i-th neuron. The equation states that pairs of neurons active together 
contribute to a lower energy the bigger the synaptic weight between them. Likewise, pairs of neurons 
that are out of sync, contribute to a higher energy (because the states are negative), the bigger the 
synaptic weight between them. Fig
as a function of the neurons state, highlighting the current state being attracted to a local minima of 
low energy during update – once reached the local minima, the network stabilizes.

Figure 15 Energy landscape of a Hopfield network. Local minima states will attract the current state during the 
update (Wikipedia). 

Training a Hopfield network involves lowering the energy of states that the net
"remember", and this is precisely 
(Hebb, 1949) (a.k.a. Hebbian learning rule). Basically, during the training phase, the network is 
presented with a pattern to remember, this is like the presented pattern (e.g. an image), and then we follow just two simple rules of learning:

 Decrease the synaptic weight between neurons that out of sync.
 Increase the synaptic weight between

This rule is often summarized as "Neurons that fire together, wire together. Neurons that fire out of 
sync, fail to link". These modifications will transform the network to have these training patterns as 
low-energy attractors. 
The capacity of the Hopfield network is proportional to the number of neurons, and is considered a 
corner stone to more sophisticated algorithms used to build modern neural networks.
 Visual Cortex 
One of the major milestones in image recognition was
Convolutional neural network (LeCun, Bottou, Bengio, & Haffner, 1998)
technique was principal to the major developments of today’s applications in image rec
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The capacity of the Hopfield network is proportional to the number of neurons, and is considered a 
corner stone to more sophisticated algorithms used to build modern neural networks.
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(LeCun, Bottou, Bengio, & Haffner, 1998)
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The capacity of the Hopfield network is proportional to the number of neurons, and is considered a 
corner stone to more sophisticated algorithms used to build modern neural networks. 

the refinement, by Yann LeCun, et. al., of the 
(LeCun, Bottou, Bengio, & Haffner, 1998). The invention of this 

technique was principal to the major developments of today’s applications in image recognition. 
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Intuitively, the conception of the Convolutional neural network comes from the realization that many 
visual patterns found in images are repeated in different positions of the image, for example, when 
identifying a tree in a figure, leaves, branches and roots are found at different places (and at different 
scales across the visual space). 
 
It is a waste of computing to force a system to learn the same patterns at different places of the visual 
field, in fact, without Convolutional networks, is impractical to learn patterns from relatively larger 
images effectively. The way those networks works is by learning what is called “convolutional 
kernels”, which are smaller versions of neural networks, specialized at learning one specific 
parameter. A typical system will have several of these kernels, each concentrated in learning one 
specific type of pattern. Since those patterns can be “everywhere”, the kernels are replicated across 
the image and fed with the input from each replicated region. 
 
Figure 16 depicts an example where, starting from an original image (left), three different convolution 
kernels are applied. The kernels are numeric matrixes (on the top), which are applied (multiplied by 
the image pixels) across the entire image. Convolutional neural networks use all convolution output in 
order to learn the relation of different aspects of one image. For example, detecting horizontal lines in 
one kernel, and vertical lines in another kernel in order to make higher-level considerations of full 
object boundaries. 
 

 
Figure 16 example of three convolution kernels applied to an image 
 

 Deep Learning Revolution 
Learning how to “see” is one of the most remarkably tasks our brain does. There is a big neural path 
dedicated to processing images – the visual cortex, and research has shown that its structure is 
hierarchical. 
 
It has been shown that different layers of the hierarchy of the cortex in mammals are responsible for 
leaning one specific feature of images, and the higher the layer, the higher the conceptual space of 
the features. Lower levels, right after the retina, are responsible for understanding edges and lines, 
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after that, subsequent layers processes more sophisticated patterns like 
Moving further, upper layers identify full objects like an eye or a nose. Finally, top layers are the ones 
putting all those pieces together to identify a person or a full scene, composed of numerous objects.
 
Deep Learning, inspired by the visual cortex architecture, is a fundamental innovation in neural 
networks, pioneered by Geoffrey Hinton and his team 
dimensionality of data with neural networks, 2006)
of several neural networks stacked on each other  
a particular pattern in the conceptual hierarchy, interpreting that pattern, and feeding the upper layer 
with some digested information, very analogous to the biological counterparts.
 

Figure 17 Increasingly complex pattern recognition in the visual cortex hierarchy
 
That, combined with convolutional neural networks, and an optimizatio
Hopfield network, called Restricted Boltzmann Machines, introduced by Hilton 
guide to training restricted Boltzmann machines, 2010)
even beat humans in image recognition tasks.
 
One particular thing to note about the Restricted Boltzmann Machines learning algorithm, is that for 
effective learning, it has to be submitted through a “dreaming” process, in which patterns are 
generated by the network without real input 
make space for the real stuff, during the “awake” phase. It’s wonderful how we are mimicking biology 
in all these different facets in order to paint the big picture of 
 
 Inception 
What happens, then, if you take those Deep Learning systems and, instead of feeding them data for 
classification, look inside in the hope of inspecting what they are “thinking of”?
That is the sort of question made by a 
Tyka, 2015). It is known that after training, each layer progressively extracts higher and higher
features of the image, until the final layer essentially makes a de
the quest to understand what exactly goes on at each layer, the engineers turned the network upside 
down and asked it to enhance an input image in such a way as to elicit a particular interpretation. Say 
you want to know what sort of image would result in “
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after that, subsequent layers processes more sophisticated patterns like perspective, shadow, 
Moving further, upper layers identify full objects like an eye or a nose. Finally, top layers are the ones 
putting all those pieces together to identify a person or a full scene, composed of numerous objects.

red by the visual cortex architecture, is a fundamental innovation in neural 
networks, pioneered by Geoffrey Hinton and his team (Hinton & Salakhutdinov, Reducing the 
dimensionality of data with neural networks, 2006). In this paradigm, the artificial brain is composed 
of several neural networks stacked on each other  – each layer of the stack is responsible for learning 
a particular pattern in the conceptual hierarchy, interpreting that pattern, and feeding the upper layer 

h some digested information, very analogous to the biological counterparts.

Increasingly complex pattern recognition in the visual cortex hierarchy

That, combined with convolutional neural networks, and an optimization of the previously discussed 
Hopfield network, called Restricted Boltzmann Machines, introduced by Hilton 
guide to training restricted Boltzmann machines, 2010), finally allowed computers to perform like o
even beat humans in image recognition tasks. 

One particular thing to note about the Restricted Boltzmann Machines learning algorithm, is that for 
effective learning, it has to be submitted through a “dreaming” process, in which patterns are 

the network without real input – and those patterns are “forgotten” by it, in order to 
make space for the real stuff, during the “awake” phase. It’s wonderful how we are mimicking biology 
in all these different facets in order to paint the big picture of artificial intelligence.

What happens, then, if you take those Deep Learning systems and, instead of feeding them data for 
classification, look inside in the hope of inspecting what they are “thinking of”?
That is the sort of question made by a group of Google engineers in 2015 

It is known that after training, each layer progressively extracts higher and higher
features of the image, until the final layer essentially makes a decision on what the image shows. On 
the quest to understand what exactly goes on at each layer, the engineers turned the network upside 
down and asked it to enhance an input image in such a way as to elicit a particular interpretation. Say 

what sort of image would result in “banana.” Start with an image full of random 

 
 
 

perspective, shadow, etc. 
Moving further, upper layers identify full objects like an eye or a nose. Finally, top layers are the ones 
putting all those pieces together to identify a person or a full scene, composed of numerous objects. 
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artificial intelligence. 

What happens, then, if you take those Deep Learning systems and, instead of feeding them data for 
classification, look inside in the hope of inspecting what they are “thinking of”? 

group of Google engineers in 2015 (Mordvintsev, Olah, & 
It is known that after training, each layer progressively extracts higher and higher-level 

cision on what the image shows. On 
the quest to understand what exactly goes on at each layer, the engineers turned the network upside 
down and asked it to enhance an input image in such a way as to elicit a particular interpretation. Say 

anana.” Start with an image full of random 
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noise, and then gradually tweak the image towards what the neural net considers a banana (
18). 
 

Figure 18 Optimizing a network to "see" bananas in random noise (figure from blog post)
 
The network used is called “GoogLeNet” 
trained on the prominent ImageNet 
thousands of images of 200 different classes. From this network, we used the techniques described 
by the Google engineers to produce wonderful and bizarre images from the “
network. The remainder of this section will expose a few of these results.
 

Figure 
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noise, and then gradually tweak the image towards what the neural net considers a banana (

 
Optimizing a network to "see" bananas in random noise (figure from blog post)

The network used is called “GoogLeNet” (Szegedy, et al., 2014), a 22 layers deep network that was 
trained on the prominent ImageNet (Russakovsky, et al., 2015) dataset, a collection of hundreds of 
thousands of images of 200 different classes. From this network, we used the techniques described 
by the Google engineers to produce wonderful and bizarre images from the “
network. The remainder of this section will expose a few of these results. 

Figure 19 The strange city of car-men 
 

 
 
 

noise, and then gradually tweak the image towards what the neural net considers a banana (Figure 

 
Optimizing a network to "see" bananas in random noise (figure from blog post) 

, a 22 layers deep network that was 
dataset, a collection of hundreds of 

thousands of images of 200 different classes. From this network, we used the techniques described 
by the Google engineers to produce wonderful and bizarre images from the “deep dreams” of that 
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Figure 20 The horrific melted-puppies 

 

 
Figure 21 The atrocious puppy-faced carpet 
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Figure 22 Bizarre containers 

 
Figure 23 Wonderful spider nets 
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Figure 24 Mister grasshopper frog 

 
Figure 25 The curious two-headed bird 
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Figure 26

Figure 27 Several iterations over the original image on the top left (Bathers at Asnieres), over different layers 
of the network. Starting from lower layers (optimizing edges and curves), down to upper layers (optimizing objects and complex forms) 
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26 The dreadful wall of judgemental eyes 

Several iterations over the original image on the top left (Bathers at Asnieres), over different layers 
work. Starting from lower layers (optimizing edges and curves), down to upper layers (optimizing 

 
 
 

 
 

 
Several iterations over the original image on the top left (Bathers at Asnieres), over different layers 
work. Starting from lower layers (optimizing edges and curves), down to upper layers (optimizing 
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 Conclusion and Future Work 
We would like to explore different Deep Learning topologies, not only GoogLeNet. There are 
topologies specialized in different domains like hand-writing recognition and face recognition that 
would definitely bring something new to the generated images. 
Another area of exploration is to train the same network (or other networks) with different image 
datasets (not only ImageNet). For example, one can train one network with works of art of specific 
category (like impressionism), and hopefully have being provoked this system to dream about 
impressionist strokes. 
On top of different networks and image datasets, there is also a broad space of parameters and 
techniques when generating the images themselves, layers can be optimized in conjunction, and with 
different optimization functions – certainly there are interesting discoveries waiting to be made on that 
front. 
Finally, we would like to add that there are other approaches to image classification that don’t use 
neural networks, Support Vector Machines, and K-Means, are among the supervised machine 
learning algorithms that can be used for that purpose. They also can be used to generate images 
from trained models, likely with completely different characteristics. 
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