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Summary 

 
This article explores the challenges 
related to training a robot designed to 
produce generative Concrete art and 
which ultimately must not be dependent 
on learning based on phenomenal 
amounts of data. This approach is also 
ideal for studying the formalization of the 
artistic creation process using a machine: 
the robot. 

 
The article will first clarify the notions of 
chaotic and random processes which are 

closely linked to the nature of algorithms 
entering the robot's knowledge base. 
Subsequently, the article introduces the 
differentiation  between Synthetic 
reasoning programming   allowing 
emulated  reasoning  via  a  process  of 
Gödelization, and Graphic programming 
as an anthropomorphic vision of a robot 
knowing how to draw and color and finally, 
the   generation   of   generative   art   by 
artificial intelligence. 
 
1. Concrete Art 
 

“Concrete art proposes to replace artistic 
imagination with mathematical design". If 
this postulate of Max Bill, which mainly 
applies to the mathematical principles of 
shapes and colors, has since become the 
manifesto of the Concrete art movement, 
we find older graphic and pictorial 
examples which perfectly respect the 
postulate. We refer, for example, to the 
system of codification of Aztec shields 
(figure 1) allowing visual identification of 
the rank and identity of the warrior. 
 
2) Self-coded and self-encrypted 
Art 
 

The dual cryptographic and aesthetic 
approach which led to the graphic and 
pictorial design of the shield invites us to 
examine concrete art from the angle of 
coded information without encryption keys 
or   encrypted   information   with   keys. 
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transformation groups to produce abstract 

 

 

 
 

 

 
Figure 1. Aztec Shield (Source: Wikipedia 
Commons    CC    by    ShareAlike    4.0 
International) 

 

In this respect, the systems elaborated by 
Julio Le Parc or Victor Vasarely to encode 
colors are true systems of cryptography 
based on combinatorics and colorimetry. 
Vera Molnar's work constantly oscillates 
between the visual result and the artist's 
algorithmic creative process which is often 
hidden but sometimes revealed for in a 
pedagogical way by the artist. In view of 
the major problems related to the legal 
protection of IP rights of artists, it is useful 
to think of the algorithmic choices of a 
robot, as well as the parameters 
associated as encryption keys. We are 
thus moving towards the concept of self- 
encoded and self-encrypted art. 

 
 
3) Robots that think and draw 

 
Programming languages, well as 
algorithms and information theory are at 
the heart of the interdisciplinary dialogues 
between artists and mathematicians. 

 
Figure    2.    Maurice    El-Milick,    Albert 
Ducrocq. (Source: private collection) 
 
"The operations of concrete art (repetition, 
progression, permutation and 
combinatorics of all kinds) are in fact 
emblematic of the new computational 
thought that accompanies developments 
in cybernetics and information theory" [5] 
(translation). 
 
A wonderful historical retrospective of Art 
Tropism towards programming is 
presented in [1]. We shall not forget that 
this movement brought together artists 
towards artistic crafts by means of 
mechanical programming intended for 
weaving looms (Anni Albers, Gee's Bend 
movement) for example. Some articles 
concerning Vera Molnar [4] allow us to 
better understand the connection between 
art and mathematics. However, the 
reciprocal movement of mathematicians 
or roboticists towards art through 
programming languages is less known 
and documented. From 1936, and 
therefore before the appearance of the 
very first computers, Maurice El-Milick 
formalizes a graphical, symbolic, and 
purely mathematical programming 
language that he calls ornamental 
algebra. This fully functional language in 
modern programming environments uses 
the formalism of so-called explicit 
equations (figure 2 left) and the theory of 



called symbolic artificial intelligence. seed. Pseudo-randomness has a 

 

 

 
or figurative ornamental art. In 1953, the 
roboticist Albert Ducrocq (figure 2 to right) 
uses binary language to develop the 
Calliope robot, a text and image generator 
[2], thus inventing “prompt engineering” 
several decades before its rediscovery by 
the generative art systems powered by 
artificial intelligence. Subsequently other 
programming languages helped to 
establish and reinforce the links between 
mathematics, graphic design and art. We 
will briefly cite the Lisp language at the 
heart of the epic “Thinking Machines” of 
the early 1980s, then the Postscript 
language used at the same time by the 
mathematician Henry Crapo to create 
mathematical figures of projective 
configurations, paving the way and laying 
the foundation of "Geometric Reasoning" 
[1], subsequently the Logo language 
associated with "Turtle Geometry" and 
more recently the Processing language 
particularly well suited to the computer 
exploration of shapes and colors. 
Regarding our robot Boustrophedon, it is 
built around the theory of "Arithmétique 
des formes". It leverages both computer 
algebra systems and symbolic / functional 
languages. 

 
4) Generative Concrete Art 

 
The approach that we put forward for 
producing Concrete artwork using a robot 
follows a sequenced conceptual 
framework we refer to as Generative Art 
by Synthetic Reasoning. As shown by the 
scheme on the left of Figure 3, this 
approach is very different from the 
process of producing artwork by what is 
called connectionist artificial intelligence 
[AI generative Art] schematized on the 
right of Figure 3. However, the Synthetic 
Reasoning approach, on the left of the 
figure, shares certain objectives with so- 

 
Figure   3.   Synthetic   Reasoning   and 
Artificial Intelligence. 
 
 
5) The three pillars of Concrete 
 

Art 
 
5.1) The search for disorder 
 

Disrupting or ordering geometry 
differently, deconstructing or structuring 
differently the rules of color composition 
are among the principles that fuel the 
creative process in Concrete art. To 
disorganize the geometry, or deconstruct 
the colorimetric rules, the robot must 
introduce  an  element  of  randomness 
while to order the geometry differently or 
structure the colorimetric rules differently, 
the robot must use combinatorics. The 
concept of randomness in Concrete art 
was developed by artists like François 
Morellet and Vera Molnar. "Vera Molnar 
introduces variations resulting not from 
her subjectivity but from random data, 
throwing dice, using telephone directories 
or tables of random numbers taken from 
math textbooks and computer 
programming” [4]. Technically, from our 
robot's point of view, we must distinguish 
pure non-deterministic randomness 
generated  for  example  by  physical 
source, from deterministic pseudo- 
randomness with a digital value or initial 



 

 

 
repetitive nature for a seed identical and 
is commonly obtained from computer 
programs. However, when teaching a 
robot the concept of disorder, we will use 
another approach that is much richer at 
the creative level: Chaos theory, which is 
particularly well suited for blurring an 
image and color scrambling. The non- 
random permutations obtained by 
swithcing from a first indexing system of 
one SFC type to a second indexing 
system of another SFC type will lead to 
perceptions of visual disorder (figure 4). 
The so-called SFC combinatorial curves 
are introduced in paragraph 6.2. 

 

 
 

Figure 4. Disorder by SFC permutations 
 
The robot will thus be able to reproduce 
the spirit of “Homage to Dürer, 225 
accidental variations, direction chaos” by 
Vera Molnar from 1990 without any 
random variation. 

 

5.2) Geometric partitioning 
 

The theory of Tiles is probably one of the 
fields of mathematics closest to art. The 
number of combinations to partition the 
plane is enormous and the application of 
the underlying theory of groups of 
geometric    transformations    is    easily 

programmed. The tiling theory is already 
observed in Islamic art before being 
revisited in the modern era by M.C. 
Escher. A combinatorial vision of tiling of 
the plane was introduced by Sébastien 
Truchet in 1702 with an eponymous 
theory. More recently, the theoretical and 
computer work of the classical geometer 
and structural engineer Janos Baracs in 
the 1980s [3] gives a second algorithmic 
breath   to  this  theory,   otherwise  well 
known to artists of Concrete art. In 2015 
Lorenzo Bocca published his 
“Sperimentare geometrie” which renewed 
the genre by exploring the partitioning of 
the plan from tiling freed from theoretical 
mathematical constraints. 
 

 
Figure 5. Truchet tiling. (Source : 
Guillaume Pelletier-Auger 2016-2023) 
 

5.3) Colorization of regions 
 

The colorization of the regions resulting 
from a partitioning of the plane can be 
carried out by our robot using classic 
techniques, either by using random 
approaches, or by using graph theory and 
theorems such as that of The Four-Color 
or by using diffusion's methods known as 
"Flood Fill algorithm". In the case of our 
Boustrophedon robot, we chose a 
topological approach much faster and 
more powerful than the previous ones, 
making it possible to control the 
colorization of the plane by connecting it 
to logic. 



 

 

 
 

 
6) Teaching reasoning to a robot 

 

6.1) Arithmetic of forms 
The Arithmetic of forms [7], is a formal 
system aimed at teaching geometry to a 
machine by converting all topological 
concepts in pure arithmetic. The classical 
topology pioneereed by mathematicians 
like Moebius, Listing and Poincaré, often 
called rubber sheet geometry, is 
extremely complex to computerize due to 
its heavy data structures. Topology also 
suffers from calculation precision 
problems, particularly when it is used to 
classify geometric shapes (e.g., 
homeomorphism) based on mathematical 
indicators such as Betti numbers. 
To teach topology to a machine or robot, 
the Arithmetic of forms identifies and 
exploits the structural isomorphisms 
existing between the topology and the 
arithmetic. This approach makes it 
possible  to  eliminate  all  the  main 
problems of computerization of the 
topology but also to control the arithmetic 
by logic, building upon pioneering work of 
Kurt Gödel [7]. For the process of 
arithmetization of calculations, Arithmetic 
of forms calculates algorithmically an 
integer value associated with each point in 
space. This value, called density, will 
subsequently be used in very different 
ways, either to make logical decisions or 
simply to assign a color to the point by 
computer hashing systems created from 
static or dynamic color tables. To enable 
the creative robot to determine and control 
arithmetic into a design interface, the 
Arithmetic of forms uses the theory of 
lambda calculus and recursive primitive 
functions, pillar theories of algorithmic 
computability. The creation phases are 
then as follows: our robot first generates 
polynomial forms with integer coefficients, 
forms that can be represented in two or 
three dimensions by a machine. 
Subsequently, the combinations of these 

primitive forms with logical operators 
chosen deliberately or randomly, allowing 
the robot to obtain visual and colored 
geometric results. Technically, the 
programming language learned by the 
robot belongs to the family lambda 
calculus interpreters such as the Scheme 
language or its modern algorithmic 
variants like the Julia language [8]. 
 

6.2) SFC metacurves 
 
 
 
 
 
 
Figure 6. Vera Molnar,  2 0 2 3 Croix en 
lignes (source www.oniris.art) 
 

Space Filling Curves (SFC) are curves 
whose  theory  was  defined  around  the 
1900s by most well-known 
mathematicians like Cantor, Péano, 
Hilbert. These curves are universally used 
in many areas of computing, and, for our 
Boustrophedon robot, they form the heart 
of the process of generating chaotic 
partitions of the plane and chaotic 
generation of colors. 
The theory of SFC was completed in 1973 
by the  mathematician Wunderlich,  then 
extended in 2022 to Gray’s metacurves as 
part of the development of a new kind of 
geometry called boustrophedonic 
geometry [9]. Gray's metacurves are 
curves that visit each point of regular and 
deformable grids in n-dimensional spaces 
only once. In the world of Concrete art, the 
most recent work (2023) by Vera Molnar 
(figure 6) explores so-called Péano's 
curves whose construction process can 
be traced back to the design of Hindustan 
seals before Jesus Christ. 



 

 

 
 

 
 

 

 
Figure   7.   Gray’s   Meta   curve   in   3D 

 

 
Figure   8.  Deformation  of  metacurves 

 
 
6.3) Topological stencils 

 

To teach the robot to partition the plane, 
we instil in the robot a fundamental 
concept of topology: The Jordan's curve 
and Jordan's polygon. This concept is 
sufficiently powerful to cover a vast 
majority of cases of regular or irregular 
topological partitions encountered such as 
lattices, tiling, random polygons, SFCs 
and closed self-avoiding curves. Jordan 
curves or polygons have the property of 
dividing the plane into three elementary 
regions: the interior, the boundary and the 

exterior of the curve or polygon. The 
ternary coding {0,1,2} of the plane 
obtained algorithmically constitutes the 
first phase of the arithmetization of the 
plane. To describe Jordan curves, we will 
use implicit equations or piecewise 
parametric equations. In both cases the 
robot will operate in the projective plane to 
formalize the continuous deformations 
without special cases. The result obtained 
will be a partition of regions delimited by 
Jordan polygons, each region being 
associated with an integer numerical 
value:    the    density    of    the    region. 
 

 
Figure 9. Jordan curves 
 
 
6.4) The Péano’s tiling 
 

The Péano's tiling developed within the 
framework of boustrophedonic geometry 
[9] are directly controlled by so-called 
directrix of the Gray’s metacurves which 
allow the robot to avoid the use of random 
or quasi-random methods in the 
generation process. The tiling generated 
are either chaotic or ordered in nature, the 
geometric order being ensured by the 
directrix of the metacurves. 
 

6.5) Colors and attractors 
 

To abandon any random approach 
regarding  colors,  the  Boustrophedon 
robot is empowered with new capabilities 
allowing him to generate chaotic behavior 
from SFC attractors powered by so-called 
noise functions (figures 14-16). These 
attractors are distant cousins of the 
strange attractors which generate an 
apparent disorder from differential 
equations. 



 

 

 
 

 

 
Figure 10. Generating a single-partition 
topological stencil 

 

 
Figure 11. Generating a triple-partitioned 
topological stencil 

 

7) Boustrophedon exhibition 
 

This virtual exhibition features a selection 
of works produced by our Boustrophedon 
robot using plane partitioning schemes 
designed by Concrete art pioneers. These 
partitions are made from self-avoiding 
curves traversing regular grids and 
subsequently transformed into Jordan 
polygons which feed the topological 
calculations underlying synthetic 
reasoning. 

 
Figure 12 Chaotic colorization 
 
 

 
Figure 13. Ordered Péano tiling. 
 
 

 
Figure 14. SFC attractor (Noise 1) 



 

 

 
 

 
 

 
 

 
 

 

 
Figure 15. SFC attractor (Noise 2) 

 
 

 
Figure 16. SFC attractor (Noise 3) 

 
 
7.1) Rotor curves by Boustrophedon 

 

 
Figure 17. Rotor metacurves 

Figure 18. Topological stencil by 
superposition of partitioning curves 
 
 
7.2) Waclaw Szpakowski’ F13 
 

 
Figure 19. Retro analysis of the 
Szpakowski F13 self-avoidant curve1939- 
1943 



 

 

 
 

 
 

 
Figure 20. Topological stencil Szpakowski 

 

F13 1939-1943 
 

 
 
 
7.3) Meanders by Anni Albers 

 
 

 
Figure 21. Retro-analysis of Anni Albers’ 
Red, Yellow and Orange Meanders 

 

The partition of the plane is made from the 
combination of a series of three 
meanders. The relative positioning of the 
meanders is obtained by playing in a non- 
random manner on the indices of the 
meander points. 

 
 

 
Figure  22.  Topological  stencil  of  the 
Meanders combination 

 
Figure 23. Topological stencil of the 
combination  of  Meanders  with 
introduction of colorimetric chaos 
 

7.4) Spiral by Julio Le Parc 
 

 
Figure 24. SFC color encoding and 
combinations 
 
 
7.5) The Java of squares by Vera Molnar 



 

 

 
 

 

 
Figure 25. The Java of the 24 squares 
(courtesy Vera Molnar) 

 

 
Figure 26 Topological colorization of Vera 
Molnar partitioning 

 

7.6) The Majus effect by Victor Vasarely 

Figure 27. Restitution of the Majus effect 
by entanglement of metapixels. 
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