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Abstract 

 
Spirals are everywhere in nature. 
Phyllotactic spirals have particularly 
attracted the attention of scientists such 
as  biologists  and  mathematicians,  but 
also artists, including architects. 

 

Much has been discussed about 
phyllotactic spirals, in particular the 
emergence of parastichy pairs of spirals in 
consecutive   Fibonacci  numbers.   Here, 
after showing a dynamical model capable 
of displaying all features of phyllotactic 
spirals, we will take a step aside, by 
describing, analysing, and generalising 
non-phyllotactic  spirals  appearing  in 
ancient Roman mosaics tessellating disks. 
This will lead us to a transformation from 
square to disk, which translates Cartesian 
coordinates into polar ones, in at least two 

 
 
 
 
 
ways,  and to the consideration that spirals 
are as much generic to this centred 
geometry as straight lines are to our more 
familiar one. 
 

Then, spiralling back to phyllotaxy, we will 
show the transition between the concentric 
spiral patterns, and proper phyllotactic 
patterns. We will wonder what type of 
genetic spiral may be chosen, and what it 
changes about the resulting conspicuous 
spirals. 
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1. Phyllotactic spirals: a basic 
dynamic model 

 

I already tackled the topics of phyllotactic 
spirals in my paper for GA2018 [1], by 
digitally simulating the analogue 
experiment made by Douady and Couder 
[2]. I used this experiment as an example 
of some distant force, here magnetic 
repulsion, creating interesting forms, here 
phyllotactic spirals. Douady and Couder 
invented an apparatus consisting in drops 
of ferrofluid falling at the centre of a dish 
filled with silicone oil and placed in a 
vertical magnetic field which repels the 
drops from the centre. The centre of the 
dish has a small bump, so that a priori the 
drops fall in a random direction, and 
continue in that direction until they reach 
the edge of the dish (where they fall into 
a ditch). But the drops are repelled from 
each other as well, so that the direction of 
each new drop depends on the repelling 
effect  of  one  or  more  of  the  previous 
ones. A first emergent phenomenon takes 
place: a steady regime of divergence (the 
angle between the direction of two 
successive drops) appears, which leads 
to the fact that the drops are points of a 
spiral, the generative or genetic spiral. 
 

 
Fig. 1: Douady and Couder experiment 

For some divergence angles, a second 
emergence occurs, which is the one we 
admire in sunflowers and many other 
phyllotactic spirals: what we perceive is 
not the genetic spiral itself, but secondary 
spirals,  which  happen  to  be  in 
consecutive Fibonacci numbers. 
 
Two parameters are involved in this 
experiment: the periodicity of the falling of 
drops, and the initial velocity of the drops. 
The constant divergence angle emerges 
whatever the choice of parameters, 
however phyllotactic spirals emerge only 
for some values of the parameters. 
 
In my algorithmic model, particles are 
created  at  the  centre  at  regular  times, 
and travel in a straight line towards the 
periphery.  The direction of the two first 
particles is random, but after that, the 
direction of each particle is determined by 
the position of all the previous particles, 
according to the law of magnetic 
repulsion.  The  absolute  value  of  the 
speed of each particle is set at a given 
value, and does not change in time,  nor 
its direction, once it is determined. The 
particles travel from the centre to the 
periphery along a radius, with the same 
constant speed. Douady and Couder 
acted upon the periodicity of the fall of 
drops, because it was the easiest to 
adjust, but I chose to align the creation of 
particles  with  the  frame  rate  in 
processing, so the parameter upon which 
I act is the absolute value of the speed. 
 
The first few particles act in a chaotic way 
but, rapidly, a constant divergence angle 
between consecutive particles emerges, 
giving way to spirals. For some value of 
the speed, the famous 360 / φ2  ≈ 137.5 ° 
(where φ = (1+√5)/2 is the golden mean) 
divergence angle appears, and produces 
the  phyllotactic  spirals  we  are  familiar 
with. A slight change in the given speed 
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will produce so-called degenerate spirals. 

 

 
Fig. 2: Overall pattern 

 

 
Fig. 3: 13 clockwise spirals 

 

 
Fig. 4: 21 anti-clockwise spirals 
 
As efficient as this model seems to be – it 
is dynamic, it provides phyllotactic spirals 
without explicitly using the “noble” 
divergence   angle,   which   is   what  we 
expect if we do not subscribe to any 
teleology or intelligent design – it is not 
without providing some more questions: 
what would be the equivalent system of 
repulsion in a botanical organism (as 
obviously  it  would  not  be  magnetism), 
and moreover, does not deciding on a 
given absolute value of speed instead of 
the divergence angle simply displace the 
teleological problem? As not a botanist, I 
shall not try to answer those questions, 
which  have  been  amply  discussed 
among more competent scientists. 
 
However, this model has got all the 
constituents of the phenomenon of 
emerging phyllotactic spirals observed in 
botanical nature: there is a genetic or 
generative spiral formed by consecutive 
particles separated by a constant 
divergence angle and, more importantly, 
with the right speed, this model displays 
visible  or  conspicuous  parastichy 
pairs  of  spirals  in  consecutive 
Fibonacci numbers. 
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2. Non phyllotactic spirals in 
concentric tessellations 

 
 
2.1  Ancient   Roman   mosaics: 
description and analysis 

 

All spirals are not phyllotactic, which 
means that spirals may be seen without 
any   genetic   spiral.   So   I  was   very 
surprised to find this illustration in the 
“bible” of phyllotaxis [3]: 

 

 
Fig. 4 

 

 
Fig. 5: [3] p. 234 
 
It is actually a bad reproduction of the 
ancient Roman mosaic shown in Fig. 6: 
 

 
Fig. 6: Roman mosaic with Head of 
Medusa,  115–150 AD. Museo Nazionale 
Romano—Palazzo Massimo alle Terme. 
 
This mosaic looks very much like this 
other one, but with the head reversed: 
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Fig.  7:  Mosaic   Floor   with   Head   of 
Medusa, 115-150 AD. J. Paul Getty 
Museum 

 
The principle of this mosaic is simple: 
triangles  are  put  regularly  along 
concentric circles around a centred 
ornated disk, and layers are offset from 
each other, in a quincunx pattern. 

 
Other mosaics obey the same logic, like 
those: 

 

 
Fig. 8: Gorgon head in spiral pattern 
mosaic. Archaeological Museum, Athens. 

 

 
Fig.  9:  Spiral  pattern  mosaic.  Palazzo 
Massimo Museum, Rome. 
 
where emerging spirals are enhanced, or 
this one: 
 

 
Fig.  11:  Head   of  Dionysos   in   spiral 
pattern mosaic. Corinth, Greece. 
 
where spirals in both directions are 
enhanced. 
 
All  mosaics  above  show  triangles  with 
size increasing with the radius, which 
makes them roughly isometric. But there 
is at least one exception to this rule: 
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Fig.  12:  Roman  geometric  mosaic 
roundel, circa 3rd Century AD. 

 
which does not prevent the emergence of 
spirals… 

 
Other mosaics show spirals emerging 
from concentric quadrilateral shapes, 
without the quincunx: 

 

 
Fig. 13: Roman mosaic, Syria, circa 4th-5th

 

century AD. 

Fig.  14:  Roman  mosaic,  Antioch,  circa 
400 AD. 
 
Those spirals are certainly not 
“phyllotactic”, and Fibonacci numbers 
have nothing to do with them. There is no 
genetic spiral, there are as many spirals 
as there are shapes around the central 
disk, all concentric layers have the same 
number of shapes, and lastly, there are 
as many spirals in one direction as in the 
other one. 
 
We can analyse the patterns made of 
triangles according to the number of 
triangles in each layer, and to the number 
of  layers  (which  happens  to  be  the 
number of triangles in each conspicuous 
spiral). 
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Fig. 15: 48 triangles by layer, 24 layers 

 

 
 

Fig. 16: 40 triangles by layer, 19 layers 
 
This analysis ascertains that those two 
mosaics are very different, even if they 
look alike at first glance. 

Fig. 17: 38 triangles by layer, 10 layers 
 

 
Fig. 18: 28 triangles by layer, 14 layers 
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Fig. 19: 32 triangles by layer, 13 layers 

 
 

 
Fig. 20: 30 triangles by layer, 13 layers 

 
The first mosaic with squarish shapes is 
much less elaborate, the mosaicist has 
struggled with the pattern in some parts, 
the difficulty being that one must make 
roughly   squarish   shapes   of  different 
sizes, each size corresponding to a 
constant fraction of the changing 
perimeter, and all that with a very small 
number of fixed size pieces... It is a 
relevant example of the conflict between 
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discrete (the pieces of stone) and 
continuous (the fraction of the perimeter), 
or between integer and real numbers... 
 
The pattern starts in a rather 
straightforward way. The mosaicist has 
managed to place 63 2-by-2 squares 
around the inner disk. But things go bad 
at a certain point and there are only 61 
squarish shapes at the boundary... 
 

 
Fig. 21: 61- 63 squares by layer, 7 layers 
 
Faced with the same problems, the rabbit 
mosaicist managed rather well… 
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Fig. 22: 48 squares by layer, 4 layers 

 
Let us now try and make our own 
idealized version of those patterns. One 
must take into account the way in which 
the height of the triangle or quadrilateral 
shape, i. e. the width of the annular layer, 
varies from centre to boundary. Without 
direct access to the original mosaics, it is 
difficult to exactly measure it. But in most 
cases, if not the result, at least the intent 
of the artist seems to be that all triangles 
are isometric. In one case (Fig. 12, 20), 
the height is approximately constant. As 
the base of the triangle is defined by the 
perimeter of the central disk and the 
number of triangles, once the initial type 
of triangle and the number of layers are 
chosen, the whole pattern is determined. 

 
Applying this method for our two first first 
mosaics, this is what it provides: 

Fig. 23: cf. Fig. 6, 15. 
 

 
Fig. 24: cf. Fig. 7, 16. 
 
The  most  compliant  to  the  isometric 
model is the Gorgon (Fig. 8, 17), and it is 
also our first example of enhancing the 
spirals by colour. The mosaicist has 
encountered a problem with this attempt: 
by choosing 38 shapes surrounding the 
disk, he could not properly arrange the 
colours periodically (as 38 = 2x19, and 19 
is a prime number). Anyway, here is our 
rendition of this pattern: 
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Fig. 25: cf. Fig. 8, 17. 

 
The next mosaic shows spirals whirling in 
the opposite direction: 

 

 
Fig. 26: cf. Fig. 9, 18. 

 
The colouring of the next mosaic is more 
tricky, but by adjusting the numbering of 
the triangles, we manage to obtain this: 

Fig. 27: cf. Fig. 11, 19. 
 
Remains the 6th  mosaic, where the 
triangles of the first layer around the 
central disk are very elongated, while the 
last  ones  at  the  boundary  are  more 
squat. It is not clear what the progression 
actually is based upon, but we shall 
assume that the intent was that all layers 
would be of the same width, all the 
triangles of the same height, regardless 
of their base. 
 
Once again, the mosaicist has 
encountered a problem with the colouring 
of the spirals, or maybe he wanted some 
irregularity. Having chosen 30 shapes by 
layer, it would have been logical to make 
5  sequences  of  6  colours,  or  6 
sequences of 5 colours, but there are 6 
sequences of 4 colours, and 2 of 3 
colours. We shall be more rational, and 
opt for 6 series of 5 colours… 
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Fig. 28: cf. Fig. 12, 20. 

 
The mosaics with quadrilaterals do not 
have the quincunx arrangement. Spirals 
are not so conspicuous, unless one 
colours consecutive shapes differently. 
Here are approximations of the two 
mosaics: 

 

 
Fig. 29: cf. Fig. 13, 21. 

Fig. 30: cf. Fig. 14, 22. 
 
 
 
 
2.2 Generalisation 
 
All those mosaics  do not tile an entire 
disk, but rather a ring, they all have a disk 
at the centre, decorated with a mythologic 
figure. 
 
But, ideally, one can tile a disk in a similar 
way, by packing concentric layers of a 
given number of regularly distributed 
shapes. We simply divide the perimeter 
of any circle by the number of shapes we 
desire. The width of each layer depends 
upon the rule we choose to implement, 
the most natural being that the shapes 
are isometric. Obviously, there is a 
problem  at  the  centre,  where  the 
perimeter tends to 0, as does the width of 
each shape… So we cheat a little, by 
starting with a radius of 1 instead of 0. 
 
For instance, the tiling disk equivalent to 
the first mosaic we analysed is this: 
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Fig. 31: Generalisation of Fig. 24. 

 
but we note that it needs much more 
layers: 89, instead of 24. 

 
We can now generalise this construction 
by choosing any number of shapes we 
want (for triangles we consider only the 
black ones), and letting the layers go as 
far as we want, and enhancing one of the 
generated  spirals.  The  depth  of  each 
layer may be such that shapes are 
isometric, or it can be constant: 

 

 
Fig. 32: 32 shapes, varying depth. 

Fig. 33: 32 shapes, constant depth. 
 
The same generalisation can be made 
with the quadrangles (all quadrangles are 
counted, both white and black): 
 

 
Fig. 34: 32 shapes, varying depth. 
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Fig. 35:  32 shapes, constant depth. 

 
We can extrapolate our method to the 
other archetypal tiling of the plane, beside 
the triangular and orthogonal ones, the 
hexagonal. We need three colours in this 
case, and even without enhancing any 
spiral, they are rather conspicuous: 

 

 
Fig. 36: 32 shapes, varying depth. 

Fig. 37: 32 shapes, constant depth. 
 
We must now return to our analysis of the 
mosaics with triangles and correct it. We 
had only considered the upward triangles, 
and  observed  that  they  were  “in 
quincunx”. This assumption was in 
accordance  with  the  mosaics,  because 
the downward triangles, between the 
coloured ones, were left in a neutral 
colour, like a background. But for a more 
accurate analysis we must also consider 
the downward triangles. With a small 
number of (black) triangles we can see 
more clearly what actually happens, i. e. 
that the triangles lay on a hexagonal 
lattice: 
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Fig. 38: Hexagonal lattice of triangles Fig. 40: Hexagonal lattice of triangles 

 
 

 
Fig. 39: Hexagonal lattice Fig. 41: Hexagonal lattice 

 
We can now generate all particle patterns 
corresponding to possible tessellations, 
depending upon the type of lattice 
(“orthogonal”, triangular, hexagonal) and 
the variation (dr) of the radius of the 
particle positions. 
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Fig. 42: “orthogonal”, dr constant. 

 

 
Fig. 43: “orthogonal”, dr variable. 

Fig. 44: triangular, dr constant. 
 

 
Fig. 45: triangular, dr variable 
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Fig. 46: hexagonal, dr constant. 

 

 
Fig. 47: hexagonal, dr variable 

 
Now let us use these particles as sites for 
Voronoi tessellations: 

Fig. 48: “orthogonal”, dr constant 
 

 
Fig. 49: “orthogonal”, dr variable 
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Fig. 50: triangular, dr constant 

 

 
Fig. 51: triangular, dr variable 

 
We notice that, in the case of the 
triangular and hexagonal lattices, while 
when dr is variable the tiles of the Voronoi 
tessellation  are  what  we  expect 
(hexagons and triangles, respectively) it 
is not always the case when dr is 
constant. 

Fig. 52: hexagonal, dr constant 
 

 
Fig. 52: hexagonal, dr variable 
 
We could  explore  further this  question, 
but it would lead us too far from our 
purpose, so in order to better explore the 
correspondence between our familiar 
tessellations and this new world of 
concentric tessellations, we shall make a 
little detour. 
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2.3 Cartesian to polar 
transformation 

 
Tiling a disk is a task equivalent to tiling a 
rectangle, with a change of perspective, 
or, more accurately, of geometry. 

 
We can imagine a very simple bijective, 
or one-to-one, transformation that goes 
from a rectangle to a disk, by taking the 
Cartesian coordinates, and considering 
them as polar ones (regardless of 
potential scalar factors) : 

 
x → θ 

y → r 

Applied  to  one  of  the  most   famous 
portrait in history, here is what happens to 
the poor Mona: 

 

 
Fig. 53 

 
Obviously there is more than one way to 
do that: 

 

 
Fig. 54 
 
but we shall stick to this first one. 
 
This  transformation  turns  vertical  lines 
into  radials,  horizontal  lines  into 
concentric circles and oblique lines into 
one, or many spiral(s): 
 

 
Fig. 55 
 

 
Fig. 56 
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Fig. 57 

 

 
Fig. 58 

 

 
Fig. 59. 

 
We   can   now   see   what   happens   to 
classical tessellations: 

 

 
Fig. 60 

Fig. 61 
 
Contrary to our generalisation of Roman 
mosaics, the tiles are rounded along 
concentric circles, which appears more 
clearly with a smaller number of tiles by 
layer: 
 

 
Fig. 62 
 

 
Fig. 63 
 
But, transforming a regular tiling pattern 
from Cartesian to polar with the simple 
rule we have adopted, we get tiles that 
are not isometric, but rather have a 
constant height, because layers have a 
constant depth. 
 
It is not the most logical way to tile a disk. 
It would be more satisfying to get tiles 
that are isometric. So I wrote another 
transformation that makes it (regardless 
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of potential scalar factors) : 

 
x → θ 

ay → r 

Let us see how our new transformation 
acts upon the same images as before: 

 

 
Fig. 64 

 

 
Fig. 65 

 

 
Fig. 66 

 

 
Fig. 67 
 

 
Fig. 68 
 
And now, let us apply this transformation 
to classical tessellations: 
 

 
Fig. 69 
 

 
Fig. 70 
 
As with the previous transformation, the 
tiles have rounded edges: 
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Fig. 71 

 

 
Fig. 72 

 
What one may conclude, among other 
things,  from  this  little  detour,  is  that 
spirals are as natural for this geometry of 
the disk, as oblique straight lines are for 
our more familiar geometry. 

 

 
 
 
3. Back to phyllotactic spirals 

 
Phyllotactic spirals are phenomena that 
emerge when florets, or any type of plant 
organs,  appear  in  a  genetic,  or 
generative, spiral. Our non phyllotactic 
spirals  were  visible  although  the  basic 
tiles were arranged, not in a spiral, but in 
concentric circles. 

 
As a transition, we can make a slight 
modification to our pattern of 32 triangles 
for each concentric circle, by converting 
each circle of tiles into a spiral such as 
the last tile of each spiral corresponds to 
the last triangle in the converted circle, 
but with a  radius  from  the centre 
increased by the depth of the layer. 

 
Putting triangles in such an arrangement, 
we could be fooled by the resemblance of 
the result with our generalisation of the 
mosaic pattern (see Fig. 33), though by 
looking more accurately at the centre we 
discover the truth, the genetic spiral: 
 

 
Fig. 73 
 
We  see  conspicuous  spirals  as  well. 
There are 32 spirals in the same 
orientation as the genetic spiral: 
 

 
Fig. 74 
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But  there  are  only  31  spirals  in  the 
opposite orientation: 

 

 
Fig. 74 

 
though it is not perceptible with the naked 
eye… 

 
We are now going to generalise this first 
experimentation and go closer to true 
phyllotactic spirals. 

 
All spirals may be written as such: 

 
r = aθb

 

 
with some particular cases: 

 
r = aθ Archimedean 

r = abθ  logarithmic 

r = a log bθ                    exponential 
 
r = aθ1/φ  (φ = (1+√5)/2)  golden 

 
r = aθ1/2 or a√θ  Fermat or parabolic 

 
Let  us  note  that,  when  referring  to  a 
mathematical function, the names weirdly 

are the inverse of those functions… 
 
As we are not interested in drawing whole 
spirals, but only in putting consecutive 
particles on a spiral, we take some 
divergence angle, i. e. the angle between 
two consecutive particles, as constant (θn 

= n div_angle), and compute the radius rn 

given by the adequate formula. 
 
By  construction, our  first  experiment  in 
this part was an Archimedean spiral, with 
a divergence angle of: 
 

(2π+π/32) / 32 =2π (65 / 2048) 
 
Let  us  now  display  this  pattern  with 
simple particles: 
 

 
Fig. 75: 
Archimedean: θn=n2π (65/2048) rn=3θn 

 
The pattern shows obvious spirals, and 
we  could  wonder  why  nature  did  not 
chose such a divergence angle… But if 
we take a smaller value for a (which is 
the same as pursuing the pattern further), 
we see that the pattern breaks at some 
point: 
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Fig. 76: 
Archimedean: θn=n2π (65/2048) rn=θn 

 
The spirals “degenerate”. 

 
What is key here, mathematically, is the 
rationality of the factor of 2π in the 
divergence angle. Though 65/2048 is 
irreducible (65 and 2048 are co-prime), 
this number is undeniably rational. 

 
Yet true phyllotactic spirals emerge when 
the divergence angle has a factor which 
is irrational, and among the irrational 
numbers, the one which is the “most 
irrational”, if we can say so, is the golden 
mean, or more precisely here, the factor 
of  the  divergence  angle  is  most 
commonly 1/φ2  (or 1/(1+φ)) where φ = 
(1+√5)/2 is the golden mean. 

 
Let us now use this divergence angle for 
the Archimedean spiral, and we see that 
the pattern produces phyllotactic spirals: 

Fig. 77: 
Archimedean, θn=n2π/φ2    rn=0.05 θn 

 
Now  what  about  the  other  types  of 
spirals? 
 
In our non phyllotactic pattern, we used a 
variation similar to the logarithmic spiral. 
Let us try it, with the “noble” divergence 
angle: 
 

 
Fig. 78: 
Logarithmic: θn=n2π/φ2   rn=0.005x1.0025θ 
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The pattern is fine but by definition the 
radius grows exponentially, so it takes a 
long time to produce the particles in the 
centre, and they go further from it very 
rapidly. 

 
Let us now try its reciprocal, the so-called 
exponential spiral. The phenomenon is 
inverse from the previous one, particles 
shoot out very rapidly at the beginning 
and then more and more slowly: 

 

 
Fig. 79: 
Exponential θn=n2π/φ2 rn=20 log(10 θn), 

 
In those two cases, conspicuous spirals 
may be hard to discern, though they are 
actually present. 

 
Let us finish with the two most promising 
types of spirals, the “golden” one, whose 
name seems appealing, and then the 
parabolic or Fermat spiral: 

 

 
Fig. 80: 
Golden: θn=n2π/φ2   rn = 2 θn

1/φ 

 

 
Fig. 81: 
Fermat: θn=n2π/φ2   rn= 5√θn 

 
The two patterns show obvious 
conspicuous spirals. 
 
Mathematically speaking, all types of 
genetic spirals yield phyllotactic 
conspicuous  spirals  in  Fibonacci 
numbers  when the divergence angle is 
the so-called “noble” one, i. e. 2π/φ2. Our 
interpretation    of    the    Douady-Couder 
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experiment yielded Archimedean spirals 
by construction, with the formula: 

 
r = (speed/div_angle) θ. 

 
While the Archimedean, golden and 
Fermat spirals look a lot like patterns 
occurring in nature, the logarithmic and 
exponential ones seem far fetched, and 
corresponding to very weird behaviours. 
The golden one has a self-similar 
propriety, but it does not seem to be a 
requirement for the kind of behaviour 
encountered in phyllotactic patterns. Jean 
[3] does not insist on a particular type of 
spirals. It depends on a lot of 
particularities of the plant in question. 
However, there seems to be a consensus 
in the scientific community about the 
Fermat spiral being the type for the daisy 
and sunflower patterns (see for instance 
[4]), that goes back to a famous paper by 
Vogel [5],  and like Dimitry Weise insisted 
upon [6]. The reason invoked in general 
is the packing efficiency of this pattern. 
But this efficiency supposes at least two 
prerequisites: first that the florets, or any 
shapes in question lie on a plane, 
secondly that the florets are all of the 
same size, or that we know of their rate, 
or rule, of growing, and those 
prerequisites are not so obvious. 

 
In conclusion, spirals are inherent to the 
geometry of the disk. Though each type 
of spiral has its own characteristics, 
phyllotactic spirals emerge as soon as 
there is a genetic spiral of any type, and, 
most importantly, a particular so-called 
“noble” divergence angle. 

 

 
 
 
Let us finish with enhancing the 
conspicuous spirals with the Fermat type: 

 

 
 

Fig. 82: 34, 55, 89 and 144 conspicuous 
Fermat spirals. 
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