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Abstract 

In 2015, Google engineer Alexander 
Mordvintsev presented DeepDream as 
technique to visualise the feature analysis 
capabilities of deep neural networks that 
have been trained on image classification 
tasks. For a brief moment, this technique 
enjoyed some popularity among 
scientists, artists, and the general public 
because of its capability to create 
seemingly hallucinatory synthetic images. 
But soon after, research moved on to 
generative models capable of producing 
more diverse and more realistic synthetic 
images. At the same time, the means of 
interaction with these models have 
shifted away from a direct manipulation of 
algorithmic properties towards a 
predominance of high level controls that 
obscure the model’s internal working.  

In this paper, we present research that 
returns to DeepDream to assess its 
suitability as method for sound synthesis. 
We consider this research to be 
necessary for two reasons: it tackles a 
perceived lack of research on musical 
applications of DeepDream, and it 
addresses DeepDream’s potential to 
combine data driven and algorithmic 
approaches. 

Our research includes a study of how the 
model architecture, choice of audio 
datasets, and method of audio 
processing influence the acoustic 
characteristics of the synthesised 
sounds. We also look into the potential 
application of DeepDream in a live-
performance setting. For this reason, the 
study limits itself to models consisting of 
small neural networks that process time-
domain representations of audio. These 
models are resource-friendly enough to 
operate in real time.  

We hope that the results obtained so far 
highlight the attractiveness of 
DeepDream for musical approaches that 
combine algorithmic investigation with 
curiosity driven and open ended 
exploration.  



 

1. Introduction 

Large scale deep-learning models such 
as Chat-GPT1, MidJourney2, and 
MusicLM3 have recently been made 
available to a wider audience. The 
capability of these models to generate a 
large variety of high quality text, images, 
or sounds and the ease with which these 
models can be used by non-experts has 
brought the field of generative machine 
learning to the forefront of public 
attention. 

Unfortunately, these models don’t lend 
themselves very well to generative 
approaches that situate the ideation and 
development of algorithms at the core of 
their practice. The reason for this 
involves both core aspects of the models’ 
functioning and practical aspects of their 
usage. A user’s influence on the model’s 
behaviour is limited to the provision of 
high level controls often in the form of 
text prompts that steer the content of the 
generated output. This comes at the cost 
of the user’s understanding of the 
models’ architectural design and 
operational functioning, both of which 
would be a prerequisite to adapt the 
models for one’s own artistic goals. 
Furthermore, the sheer size of these 
models renders it unfeasible for regular 
users to train these models on material 
that they might have created and/or 
collected on their own. This prevents 
these models from generating output that 
is representative of the potentially highly 
idiosyncratic aesthetic and thematic 
interests of a specific user. 

                         
1 ChatGPT: chat.openai.com 
2 MidJourney: docs.midjourney.com 
3 MusicLM: aitestkitchen.withgoogle.com 

The DeepDream technique (DD) 
represents one of the earliest deep 
learning based approaches to generate 
synthetic images. While this technique is 
clearly inferior to state of the art 
generative models in terms of diversity 
and quality of generated media, it excels 
at exposing the relationships between the 
algorithmic properties of the model and 
the characteristics of the generated 
media. Furthermore, DD can be used in 
combination with models that possess a 
modest number of parameters. These 
models can be trained on relatively small 
datasets and are thereby able to capture 
some of the idiosyncratic properties 
inherent in these datasets. Furthermore, 
these models are able to generate media 
very quickly and can therefore be used in 
real-time. 

This publication focuses on the use of DD 
for generating audio. The work described 
is divided into two parts. The main part 
consists of an analytical study of the 
relationships between training data, 
model architecture, DD parameters on 
the one hand and the acoustic 
characteristics of the generated audio on 
the other hand. The second part 
represents an example application of DD 
for music composition. 

2. Background 

In 2015, Alexander Mordvintsev 
presented DD as a technique to improve 
the understanding of the feature 
extraction capabilities of deep 
convolutional neural networks (DCNN) 
that have been trained on image 
classification tasks [1]. The technique 
employs a visualisation procedure that 
functions by running a training process on 
an input image instead of the network. 
During this procedure, the input image is 
iteratively modified through a feature 

https://chat.openai.com/auth/login
https://docs.midjourney.com/
https://aitestkitchen.withgoogle.com/experiments/music-lm


inversion process that maximises the 
activity of one or several chosen network 
layers and feature maps. After several 
iterations, the input image increasingly 
exhibits those features that are 
recognised by the chosen network layers 
and feature maps. With the aid of this 
visualisation procedure, it can be shown 
that lower network layers recognise basic 
patterns, while higher network layers 
recognise more complex composite 
patterns. For a more exhaustive 
introduction into DD, the reader is 
referred to a recently published 
systematic review [2]. 

While much of the interest and popularity 
around DD has focused on its application 
in the image domain, a few researchers 
and artists have also explored its 
usefulness for audio. 

Ardila and colleagues applied DD on a 
DCNN that has been trained with raw 
waveforms to predict collaborative 
filtering track embeddings [3]. The 
authors studied the filters learned by the 
first layer and the corresponding spectra. 
Mishra and collegues employed DD on a 
DCNN that has been trained with Mel 
Spectrograms on a singing voice 
detection task [4]. Their findings suggest 
that at the deepest level, convolution 
layers preserve temporal and harmonic 
structures while fully connected layers do 
not. 

In a more artistically motivated research 
project, Galac and Delgadino employed 
creative variations on DD [5]. These 
variations are based on the integration of 
audio filters into the activation 
maximisation function. The authors used 
the pre-trained YAMNETl [6] model. They 
conclude that the use of a hard-cut filter 
in the maximisation function produces 
more interesting sonic results than the 

original DD. Another artistic research 
project has been conducted by Herrmann 
[7]. The author trained a DCCN on a 
scaleogram representations of audio 
clips. What mainly distinguishes this 
project from previous endeavours is that 
training is self-supervised instead of 
supervised. Self-supervised training 
causes the network to perceptually 
discriminate between different audio 
features instead of learning a mapping 
from input to explicit labels. 

The work presented in this publication 
complements and extends this prior 
research in two directions. Similarly to [3] 
and [4], it conducts a systematic analysis 
of the feature detection capabilities of 
different network layers and feature 
maps. But in addition, it also conducts a 
comparison between different audio 
training sets and network architectures. 
Similarly to [5] and [7], it highlights the 
creative possibilities of DD for musical 
applications. But in addition, it exemplifies 
how DD can be adopted for creating a 
musical composition. 

3. Implementation 

The study presented in this publication is 
based on our own implementation and 
training of neural networks and the 
subsequent application of DD for 
generating audio. The implementation 
involves a selection of three different 
publicly available audio datasets, the 
design of two different DCCN, their 
training on audio classification tasks, the 
modification of an existing DD algorithm, 
and the use of audio feature analysis to 
quantify the characteristics of the 
generated audio. Each of these 
implementation aspects is described in 
more detail in the subsequent sections. 

3.1 Datasets 



We decided to work with several different 
audio datasets as training data to 
compare their respective influence on the 
audio generated with DD. Our criteria for 
selecting the datasets were as follows: 
the audio sampling rate is at least 44100 
Hz, each audio recording is at least a few 
seconds long, and the number of classes 
is at least 100. The last criteria was 
based on our assumption that a model 
that recognises a large number of 
classes discriminates between more 
nuanced audio characteristics than a 
model that recognises a small number of 
classes. We chose three audio datasets 
that full-fill these criteria but that differ 
from each other with regards to the 
diversity of the recorded sounds. The 
Freesound dataset4 exhibits the largest 
acoustic diversity. It contains 200 classes 
of sound events that were drawn from the 
AudioSet Ontology. The Musical 
Instruments dataset5 exhibits 
intermediate acoustic diversity. It contains 
255 classes of instruments played at 
different loudness levels and with 
different tone types. The AISHELL-3 
dataset6 exhibits small acoustic diversity. 
It contains 218 classes of different 
Chinese subjects speaking short 
sentences in Madarin. Throughout the 
remainder of the text, the three datasets 
will be referred to as Events for the 
Freesound Dataset, Instruments for the 
Musical Instruments dataset, and Speech 
for the AISHELL-3 dataset. 

3.2 Models 

                         
4 Freesound Dataset 50k: zenodo.org 
5 Microphone Array Measurements of Musical 
Instruments: depositonce.tu-berlin.de 
6 AISHELL-3 Open Source HI-FI Mandarin Speech 
Corpus: www.aishelltech.com 
 

Two different convolutional models have 
been designed using the PyTorch7 deep 
learning framework. Both models take as 
input normalised waveforms of raw audio 
of one second duration and a sample rate 
of 44100 Hz and produce as output the 
log-probabilities for each class. In both 
models, the neural network consists 
solely of 1D convolution layers that 
perform convolution in the temporal 
domain. This design is informed by the 
finding that fully connected layers fail to 
capture crucial aspects of audio [4]. The 
model architecture is very simple and 
differs between the two models only in 
terms of the number of convolution 
layers. One model (Model1) consists of 
four convolution layers and possesses 
roughly 400000 trainable parameters. 
The other model (Model2) consists of 
eight convolution layers and possesses 
roughly 300000 trainable parameters.  

 
Figure 1: Architectures of Model1 and 
Model2. The deepness of the layers 
increases from left to right. For each 
layer, the vertical number represents the 
length of the input vector and the 
diagonal number represents the number 
of channels. 

                         
7 PyTorch: pytorch.org 

https://zenodo.org/records/4060432
https://depositonce.tu-berlin.de/items/f5cea5d6-5440-4307-aa19-f6abdaf3d7b0
https://www.aishelltech.com/aishell_3
https://pytorch.org/


 
Table 1: Layer Properties. The 
abbreviations stand for: layer for layer 
index, and ksize for kernel size. 

The layout of the architecture and the 
properties of the convolution layers are 
depicted in figure 1 and table 1, 
respectively. Other elements of the model 
architecture are the use of the Swish 
activation function [8] and Batch 
Normalisation between each layer, and 
the Softmax activation function after the 
output layer. The motivation to design two 
models that differ from each other with 
regards to the number of convolution 
layers was informed by the well known 
finding that layers at different depth 
discriminate features at different levels of 
complexity [1]. By performing DD on 
models that possess a different number 
of layers but are otherwise identical, 
insights can be gained whether the layer 
count affects the complexity of acoustic 
properties that generated audio. 

3.3 Training 

The two models were trained on an audio 
classification task. Training was 
performed independently with each audio 
dataset. Training was run for 200 epochs 
with a test-train split of 20%/80% and a 
batch size of 128. The learning rate was 
initially set to 10−3 and subsequently 

stepwise reduced every 100 epochs with 
a decay factor of 0.1. The loss function 
was based on negative log likelihood. For 
parameter optimisation, an Adam 
optimiser with default parameter settings 
was employed. Table 2 lists the 
classification accuracy achieved on the 
test set for each of the models and 
datasets. 

 
Table 2: Audio Classification Accuracy. 

3.4 DeepDream 

The implementation of DD follows 
standard practice but includes two 
additional processing steps: a shift by a 
random time offset and a low-pass filter. 
When employing DD on images, it has 
been shown that a random offset in the 
image coordinate system increases the 
diversity of the generated visual features. 
For this reason, this technique has been 
adopted for audio. The addition of a low-
pass filter was inspired by the work by 
Galac and Delgadino [5] and has proven 
crucial to reduce the amount of noise 
present in the audio that is generated in 
deep layers. 

In the chosen implementation, DD 
conducts three processing steps: 1) the 
waveform is modified through gradient 
ascent 2) the waveform is randomly 
offset in time 3) the waveform is low-pass 
filtered. The gradient ascent algorithm 
conducts seven processing steps: 1) the 
waveform is passed into the model 2) the 
activations of the chosen layers and 
feature maps are obtained 3) for each 



layer and activation, the mean square 
error loss between the activations and a 
zero vector is calculated 4) the error 
gradient is computed by back-
propagation 5) the gradient is smoothed 
using Cascade Gaussian Smoothing 6) 
the waveform is modified based on the 
gradient 7) the waveform is normalised. 

In this DD implementation, the following 
parameters can be varied: the content of 
the initial audio waveform, the maximum 
size of the random temporal offset, the 
number of iterations over which the 
waveform is modified, the coefficient and 
kernel size used for gradient smoothing, 
the learning rate with which the gradient 
is applied to the waveform, and the cut-
off frequency of the low-pass filter. 

3.5 Audio Feature Analysis 

To assess of the acoustic characteristics 
of the generated audio, several audio 
feature are analysed: Waveform Root 
Mean Square, Spectral Centroid, Spectral 
Flatness, and Spectral Flux. The Root 
Mean Square (RMS) of a waveform 
corresponds to the Loudness of a sound. 
The Spectral Centroid indicates where 
the centre of mass is located in an audio 
spectrum. This corresponds to the 
Brightness of a sound. The Spectral 
Flatness is obtained as ratio between 
geometric and arithmetic mean of an 
audio spectrum. This corresponds to the 
Noisiness of a sound. The Spectral Flux 
is obtained as difference of the audio 
spectra between two consecutive frames. 
This corresponds to the Roughness of a 
sound. 

4. Results 

Two experiments have been conducted 
to study the acoustic results obtained 
using DD. The first experiment served to 

assess the influence of a chosen audio 
dataset, model architecture, convolution 
layer, and feature map on the generated 
audio. The second experiment served to 
evaluate the effect of different 
parameters of DD on the generated 
audio. These two experiments and the 
results obtained through them are 
discussed in more detail in the following 
sections. 
 

4.1 Experiment 1 

In this experiment, a total of six different 
models (two model architectures, each 
trained with one of the three audio 
datasets) were systematically tested by 
maximising the activity of each 
convolution layer and feature map in turn. 
In each of these tests, the same 
parameter values for DD were used: 
white noise as initial audio, a maximum 
temporal offset size of 1, a number of 
iterations of 2000, a gradient smoothing 
coefficient of 0.5 and kernel size of 9, a 
learning rate of 0.01, and a low-pass cut-
off frequency of 12 kHz. The audio 
generated in each of these tests was 
subsequently analysed using the selected 
audio features. The results of this 
experiment are presented as sound 
examples and graphs. 

Since the number of feature maps and 
correspondingly the number of generated 
sounds is very large, only a small 
representative subset of these sounds 
has been made available online. For 
each combination of model architecture 
and audio dataset, this selection consists 
of two sounds per convolution layer. The 
sounds have been uploaded to the 
SoundCloud audio streaming service and 



are organised as one Playlist for each 
model and dataset8 9 10 11 12 13. 

To quantify the acoustic characteristics of 
the generated sounds, the mean and 
standard deviation of each audio feature 
have been computed for all sounds that 
were generated by all the feature maps in 
a single convolution layer. These 
statistics are depicted as graphs, with 
one graph for each combination of model 
architecture and audio feature (see 
figures 2, 3, 4, 5, 6, 7, 8, 9). In each of 
these graphs, the mean and standard 
deviations of the corresponding audio 
feature are depicted for each dataset and 
model layer. The indices of the model 
layers belong to the x-axis and the audio 
feature values to the y-axis. The mean 
values of the audio features are plotted 
as fully opaque lines whereas the shaded 
bands indicate a range of one standard 
deviation. The primary colours of the lines 
and bands represent the different 
datasets: Red for Events, Blue for 
Instruments, and Green for Speech. 
                         
8 Experiment 1 - Audio examples generated by 
Model1 trained on the Events dataset: 
soundcloud.com 
9 Experiment 1 - Audio examples generated by 
Model2 trained on the Events dataset: 
soundcloud.com 
 
10 Experiment 1 - Audio examples generated by 
Model1 trained on the Instruments dataset: 
soundcloud.com 
 
11 Experiment 1 - Audio examples generated by 
Model2 trained on the Instruments dataset: 
soundcloud.com 
12 Experiment 1 - Audio examples generated by 
Model1 trained on the Speech dataset: 
soundcloud.com 
13 Experiment 1 - Audio examples generated by 
Model2 trained on the Speech dataset: 
soundcloud.com 

When bands overlap, the resulting mixed 
colours represent several datasets: 
Yellow for Events and Speech, Violet for 
Events and Instruments, Cyan for 
Instruments and Speech, and Gray for all 
datasets. 
 

 
Figure 2: Model1 - Layer Effects on 
Loudness. 

 
Figure 3: Model2 - Layer Effects on 
Loudness. 

Based on this quantitative analysis and in 
combination with qualitative listening, 
several observations can be made about 
the effect of each layer in Model1 or 
Model2 on the acoustic characteristics of 
the generated sounds. These 
observations as summarised for each 
model architecture and audio feature in 
tables 3, 4, 5, 6, 7, 8, 9, 10. The following 
abbreviations are used in these tables. If 

https://soundcloud.com/user-407415287/sets/deepdream-audio-model1-fsd50k-dataset/s-fMvTIKglh95?si=05f051c4fa4344cfbc031e99f2e41f7e&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/user-407415287/sets/deepdream-audio-model2-fsd50k-dataset/s-Ki4FZtCHs4a?si=d4c4b970f2da44c2beb812cb282464d2&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/user-407415287/sets/deepdream-audio-model1-musicalinstruments-dataset/s-xotWexExtca?si=4dddcf50ad22465ba6cb49828573eb81&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/user-407415287/sets/deepdream-audio-model2-musicalinstruments-dataset/s-98ICtsyAQJW?si=7c6ebccb5ecd42d7bc3dad4eac74f204&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/user-407415287/sets/deepdream-audio-model1-aishell3-dataset/s-alnPtwIiZz2?si=ab9fafc07e7947cfbd0ffe903a90129c&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/user-407415287/sets/deepdream-audio-model2-aishell3-dataset/s-TDqq14fvNtu?si=1f69b12327344fa386d6729f3380d1b9&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing


the effect applies only for one or two 
datasets, then these dataset(s) are 
indicated with the single letters in 
brackets: (e) refers to Events, (i) to 
Instruments, and (s) to Speech. If the 
effect applies to all audio datasets, then 
the letter (a) is used. 

 
Figure 4: Model1 - Layer Effects on 
Brightness. 

 
Figure 5: Model2 - Layer Effects on 
Brightness. 

 

Figure 6: Model1 - Layer Effects on 
Noisiness. 

 
Figure 7: Model2 - Layer Effects on 
Noisiness. 

 
Figure 8: Model1 - Layer Effects on 
Roughness. 

 
Figure 9: Model2 - Layer Effects on 
Roughness. 



 
Table 3: Model1 - Layer Effects on 
Loudness 

 
Table 4: Model2 - Layer Effects on 
Loudness 
 
 
 
 

 

 
Table 5: Model1 - Layer Effects on 
Brightness 

 
Table 6: Model2 - Layer Effects on 
Brightness 



 
Table 7: Model1 - Layer Effects on 
Noisiness 

 
Table 8: Model2 - Layer Effects on 
Noisiness 

 
Table 9: Model1 - Layer Effects on 
Roughness 

 
Table 10: Model2 - Layer Effects on 
Roughness 
 
4.2 Experiment 2 

In the second experiment, the influence 
of different DD parameter values on the 
generated sounds were evaluated with a 
Model2 architecture that has been trained 
on the Events dataset. This combination 
of dataset and model has been chosen 
because it generates sounds with an 
acoustic characteristics that varies widely 
both in the temporal and spectral domain. 
In this experiment, audio was generated 
in real-time. This was achieved by 
conducting several DD iterations on a 
short excerpt of a full waveform. The 
excerpt was repeatedly shifted in a 
round-robin manner to eventually subject 
the entire waveform to feature inversion. 
In each DD run, only one DD parameter 
was changed at a time while the others 
were fixed. Fixed parameters were 
assigned the following values: a 
maximum temporal offset size of 1, a 
number of iterations of 10 per audio 
excerpt, a gradient smoothing coefficient 
of 0.5 and a kernel size of 9, a learning 
rate of 0.04, and a low-pass cut-off 



frequency of 12 kHz. Together with the 
parameter changes, the selection of 
convolution layers and feature maps was 
also changed. The variations of 
parameter values, convolution layers, and 
feature maps followed a strict sequence 
which is shown in table 11. In each DD 
run, the audio waveform was initialised 
with white noise and then modified by 
stepping through the sequence of 
settings. A 20 seconds delay was applied 
before applying the step. Between each 
subsequent step, a 20 seconds pause 
was applied. These durations were 
chosen to allow the acoustic 
characteristics of the generated sound to 
stabilise before the next change. 
Changes in layers and feature maps were 
offset by 10 seconds to changes in DD 
parameters. This allowed to observe the 
effect of each of these changes 
separately.  

 
Table 11: Experiment 2 - DD Parameter 
Sequences 

 

Figure 10: Model2 - DD Parameter 
Effects on Loudness. 

 
Figure 11: Model2 - DD Parameter 
Effects on Brightness. 
 

The sounds that have been generated in 
Experiment 2 are available on 
SoundCloud14. For these sounds, the 
same acoustic features have been 
analysed as in Experiment 1. The graphs 
in figures 10, 11, 12, 13 depict how the 
mean value of a specific audio feature 
changes in response to different DD 
parameter variations and selections of 
layers and feature maps. The line colours 
in these graphs represent the parameter 
that were changed. The bold black line 
represents feature values that were 
obtained when keeping all DD 
parameters fixed and only selecting 
different layers and feature maps. In each 
of these plots, the time in seconds 
belongs to the x-axis and the audio 
feature value belongs to the y-axis. The 
red vertical lines indicate the moments of 
parameter change. The green vertical 
lines indicate moments of layer and 
feature map change.  

                         
14 Experiment 2 - Audio examples generated by 
Model2 trained on the Events dataset: soundcloud.com 

https://soundcloud.com/user-407415287/sets/deepdream-audio-experiment-2-model2-fsd50k-dataset/s-Oy0ycyecZzw?si=0a25d86848414b34a4be900bab05c27c&utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing


 
Figure 12: Model2 - DD Parameter 
Effects on Noisiness. 

 
Figure 13: Model2 - DD Parameter 
Effects on Roughness. 
 

This experiment shows that the influence 
of most DD parameters on the acoustic 
characteristics of the generated sounds is 
small. The gaussian smoothing 
coefficient and kernel size have no 
acoustic effect at all. The interaction 
count and learning rate exhibit a small 
acoustic effect. These two parameters 
exert their  influence mainly by affecting 
the duration over which audio features 
change when a layer and/or feature map 
is switched. Other than that, an increase 
in iteration count also leads to a slight 
increase in Roughness if this feature is 
small otherwise, and a large learning rate 
slightly increases Noisiness, Brightness 
and Roughness. The randomised 
temporal offset mainly affects Brightness 

and Noisiness which both increase 
significantly for high offset sizes. The cut-
off frequency of the low-pass filter has 
the strongest effect on Brightness which 
directly correlates with the cut-off 
frequency. The cut-off frequency also 
affects Loudness which is reduced for 
low frequencies. The acoustic properties 
that are affected the least by the cut-off 
frequency are Noisiness and Roughness. 
Both properties increase only slightly with 
increasing cut-off frequency. 
 
 

5. Discussion 

The quantitative and qualitative 
evaluations conducted as part of the two 
experiments proved extremely useful to 
gain a better understanding for the 
influence of the training data, network 
architecture, and DD parameter settings 
on the acoustic characteristics of the 
generated sounds. 

It has been found that the choice of layer 
has by far the strongest influence on the 
acoustic characteristics of the generated 
sounds. This effect is particularly strong 
for the first two layers and supersedes 
the influence stemming the dataset or DD 
parameters. Choosing a feature map in 
the first layer always results in strongly 
pitched sounds with simple spectra, 
sustained loudness, and little noise. 
Choosing a feature map in the second 
layer always leads to sounds whose 
loudness is concentrated in short bursts. 
From then on, feature maps in 
increasingly deeper layers tend to 
generated sounds that exhibit an 
increased complexity in terms of 
Loudness and spectral properties at the 
cost of an increase in noise. This 
tendency towards more acoustic 



complexity is counteracted by Brightness, 
whose variability across feature maps 
decreases significantly at higher layers. 

The higher number of layers in Model2 
compared to Model1 has no dramatic 
effect. Feature maps in layers 4 and 5 
tends to generate sounds that have a 
slightly more complex and diverse 
Loudness and spectral dynamics than 
more shallow layers. Feature maps in 
layers 6 and 7 generate mostly the same 
acoustic results at layer 5. Accordingly, 
with the current choice of a layer 
architecture, an additional increase in the 
number of layers will likely not produce 
more diverse acoustic results. 

It is a surprising and somewhat 
disappointing finding that the choice of 
audio dataset influences the 
characteristics of the generated audio 
only in nuances. No combination of 
feature map and DD parameter settings 
has generated sounds that clearly 
reproduce the characteristics of the audio 
material in the datasets. Nevertheless, 
the nuanced influences of the datasets 
are worth mentioning. In case of the 
Events dataset, the generated sounds 
are fairly varied with regards to the 
dynamics of their loudness and spectral 
properties, with the loudness and spectral 
dynamics being strongly correlated. In 
case of the Instruments dataset, the 
generated sounds exhibit a high loudness 
dynamics and low spectral dynamics, 
with both of them being strongly 
correlated. In case of the Speech 
dataset, the generated sounds exhibit a 
low loudness dynamics and high spectral 
dynamics, with both of them exhibiting 
little or no correlation. 

Also small was the influence of most DD 
parameters on the generated sounds. 
The only exceptions are the size of the 

randomised temporal offset which affects 
Brightness and Noisiness and the cut-off 
frequency of the low pass filter which 
affects Brightness of the generated 
sounds. Due to a lack of acoustic impact 
of most DD parameters, the focus of 
attention should clearly be placed on the 
choice of feature maps when aiming for a 
large variety of generated sounds. 
 

6. Composition 

The findings described previously have 
helped with the creation of a music piece 
entitled "Analog Zombies in Deep 
Dreams"15. This piece will be released on 
CD Nr. 23 of the Deutsche Gesellschaft 
für ElektroakustischeMusik)16. The piece 
has been composed by the musician 
Thomas Wenk. For the composition, he 
recorded the mechanical and electrical 
noises produced by old cassette 
recorders. These recordings were 
assigned to one of three classes: isolated 
click sounds with low brightness and 
strong noise, isolated click sounds with a 
clear pitch and intermediate brightness, 
rapid click repetitions with high brightness 
and a clear pitch. A version of Model1 
with a smaller number of feature maps 
was trained to classify these recordings 
and subsequently used in combination 
with DD to generate new audio material. 
The generated sounds that were obtained 
in this manner vary in their acoustic 
characteristics between undifferentiated 
coloured noise and complex rhythmical 
patterns. 

                         
15 Analog Zombies in Deep Dreams: www.e-
wegner.net 
16 Deutsche Gesellschaft für Elektroakustische 
Musik: www.degem.de 

https://www.e-wegner.net/data/AnalogZombiesInDeepDreams.wav
https://www.e-wegner.net/data/AnalogZombiesInDeepDreams.wav
https://www.degem.de/cds-dvds/


The composer created a piece that 
combines the original recordings and 
generated sounds into a collage that 
highlights the causal connection between 
the two types of sounds. At the beginning 
of the piece, the original and generated 
sounds are juxtaposed in a manner that 
emphasises their differences. In this 
section, the original sounds are clearly 
recognisable as being produced by a 
technical apparatus whereas the 
generated sounds possess a more 
abstract sonic quality. Later on, the 
generated sounds dominate and draw the 
listeners’ attention to the nuanced 
differences between the generated 
sounds. This section is occasionally 
interrupted by recordings of key-presses. 
The recordings appear as percussive 
punctuations that separate the generated 
sounds from each other. 
 

7. Outlook 

We plan to continue our work on musical 
applications of DD in both artistic and 
scientific directions. 

For the creation of new artistic works, we 
plan to adopt the approach employed in 
Experiment 2, i.e. the generation of audio 
in real-time while simultaneously 
switching between convolution layers and 
feature maps. The new works could take 
the form of live music performances or 
interactive audio installations. As part of 
this artistic direction, we also intend to 
explore the acoustic effects of combining 
multiple feature maps at the same time. 
In parallel to this, we also intend to 
collaborate with addititonal composers 
who extensively work with large pre-
recorded audio collections. We are 
curious to see what other strategies these 
composers might come up with when 

using DD to expand and enrich their 
musical vocabulary. 

On the scientific side, our most 
immediate next step involves the 
conduction of additional systematic 
experiments that deal with varying 
aspects of DD that have so far been kept 
fixed. This includes initialising audio 
waveforms with other content than white 
noise and varying the number of classes 
when training models on an audio 
classification task. Other future work 
involves the design of model 
architectures that incorporate more 
sophisticated layers such as different 
variants of residual layers. Finally, and 
most importantly, we would like to follow 
up on the work conducted by Herrmann 
[7] and abandon supervised training in 
favour of self-supervised approaches. 
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