
XXII Generative Art Conference - GA2019

page 1

Playing the Piano: Understanding Algorithmic Music
Through Interaction

Prof. Philippe Kocher

Institute for Computer Music and Sound Technology
Zurich University of the Arts

Zurich, Switzerland
e-mail: philippe.kocher@zhdk.ch

Dr. Daniel Bisig
Institute for Computer Music and Sound Technology

Zurich University of the Arts
Zurich, Switzerland

e-mail: daniel.bisig@zhdk.ch
David Inauen

Institute for Computer Music and Sound Technology
Zurich University of the Arts

Zurich, Switzerland
e-mail: david.inauen@zhdk.ch

__

Abstract

The project Klavierspiel (‘piano
playing’) combines a piano
automaton and interactive, touch-
screen-based control software.
The piano automaton is a piano-
playing robot to be fixed on the
keyboard of any conventional
instrument. It can perform much
faster movements and strike many
more keys at the same time than a
human pianist. Therefore, it lends
itself to a variety of sonic
experiments, especially for
computer-generated music. The
authors developed three different
graphical user interfaces to control
the automaton. Explicitly aimed at
people without musical expertise,

these interfaces provide the
opportunity to gain hands-on
experience with generative music.
They illustrate how to create
musical gestures, patterns and
structures at different levels of
abstraction, and convey specific
algorithmic composition techniques
in an easy-to-understand and
practice-oriented way. This paper
describes the three user interfaces
regarding their technical
implementation and their musical
potential. Furthermore, it discusses
the observations made during a
three-day exhibition in Zurich.

1. Introduction

This article describes the
installation Klavierspiel (‘piano

XXII Generative Art Conference - GA2019

page 2

playing’) that we presented at the
Design Biennale Zurich, an
exhibition that displayed national
and international projects from
various disciplines and took place
in late August 2019 [1]. The title of
this issue of the biennale was
‘PLAY’, which indicated that the
public was not only meant to look
at the artefacts but explicitly invited
to explore them in playful
interaction.

The realisation of the installation
was motivated by our interest in
generative music and educational
intent to impart knowledge about
this artistic practice. The main idea
was to design an installation to
guide a non-expert audience to
obtain a perceptual experience of
different generative approaches
and an intellectual understanding
of the underlying structural
principles. We attempted to lead
non-musicians to musical thinking
by engaging them in playful
interactions with generative
processes.

The installation consists of three
separate applications and thereby
exemplifies three different
generative approaches. It
confronts the user with different
structures, different levels of
abstraction, and varying degrees of
randomness. The applications
employed different means to
engage the user in a creative
interaction: first, a physics engine
that generates keystrokes as result
of objects falling on a virtual

keyboard, second, an interface that
translates drawings into music, and
third, a flowchart interface to
construct simple rule-based
compositions.

Apart from the educational aspect,
we were also interested in
observing how the public interacts
with the installation, i. e. in which
way, how long, driven by what
motivation, and how musically
‘meaningful’ the visitors would
engage with the three applications.

2. The Installation Setup

The musical instrument used for
the installation Klavierspiel is a
piano automaton. This device was
conceived and built by the Austrian
media artist and engineer Winfried
Ritsch, and it serves to turn an
acoustic piano into a computer-
controlled instrument. It is,
therefore, particularly well suited
for algorithmic and computer-
generated music [2]. The piano
automaton is not a piano with a
built-in playback technology but a
kind of robot piano player, i. e. a
self-contained device to be put on
top of the keyboard of any grand or
upright piano, and fixed in place
with two large clamps. It consists
of a metal frame that holds 88
solenoids to hit the keys of the
keyboard. Three microcontrollers,
one master and two slaves,
actuate these solenoids. They
receive commands over Ethernet
from a control software.

XXII Generative Art Conference - GA2019

page 3

One of the specific capabilities of
the automaton is that it can
depress an arbitrary number of
keys simultaneously, all 88 at the
same time if necessary, whereas
existing, commercially available
player pianos (the Yamaha
Disklavier for instance) restrict this
number to a value high enough for
traditional classical piano music
but by far too low for the kind of
experimental music that Ritsch had
in mind [3]. The aesthetic potential
of the piano automaton lies in the
fact that it can realise music that is
beyond the abilities of a human
pianist.

Figure 1: The piano automaton.

The installation setup consists of
three computers connected to
touchscreens with which the user
can interact with the applications.
The touchscreens are placed on
black pedestals that are arranged

in a semi-circle around a grand
piano (see Fig. 2). Each computer
runs one of the three different
applications. All computers are
connected to a local network over
which they send the output of the
application (see Fig. 3). This
output, in OSC format but
structured similar to MIDI data,
consists of note events that carry
two values: one to indicate the key-
number from 21 to 108 (the range
of a piano) and another one to
specify the velocity as a value
normalised to the range between 0
and 1 (where 0 marks a note-off
event). A control software that runs
on a fourth, headless computer
receives all these note events and
transforms them into a machine-
specific data format to be read by
the microcontrollers of the piano
automaton. Due to their inter-
connection in a network, all three
applications can send note events
concurrently which allows for three
users to play with the piano
automaton at the same time.

Figure 2: Situation at the

exhibition.

XXII Generative Art Conference - GA2019

page 4

Figure 3: Flowchart of the
installation setup.

3. Conceptual Approaches

Each of the authors conceived of
an individual interaction scenario
and implemented it in an
application. This section describes
the different conceptual approach-
es that informed the development
of these three applications.

3.1 Cascading Cubes

The first application, named
Cascading Cubes, provides an
interface that emphasises
playfulness and intuition of
interaction. It does so by
establishing a simulation-based
environment that combines a
realistic representation of a piano
keyboard and of a marble run
across with small cubes tumble
before eventually falling on and
triggering a piano key (see Fig. 4).
In this simulation, the user can
alter the shape of the marble run
and modify some of the physical
parameters. The situation thus
created is intuitive and challenging
at the same time. Intuition stems

from the fact that the physical
principles of a marble run and the
correlation between piano key
presses and sound events are
familiar to anybody. The
challenging aspects stem from the
large amount of randomness as to
where the falling cubes will hit the
piano keyboard. Increasing the
probability that the cubes are
hitting only certain sections of the
piano keyboard requires a
redesign of the marble run. The
more control the users would like
to achieve on the musical result,
the more carefully they will have to
adjust the shape of the marble run.
This combination between a
readily understandable level of
interaction and a difficult to achieve
goal follows the principle of playing
a game. Accordingly, it is through
gamification that this software
interface lets the users familiarise
themselves with the principle of
balancing control and chance in
generative music.

Figure 4: Screenshot of the
application Cascading Cubes.

3.2 Little Loops

XXII Generative Art Conference - GA2019

page 5

The application Little Loops
provides an interface for converting
graphical drawings into a musical
result. By doing so, it illustrates
compositional approaches in which
musical material is ideated through
visual sketching (see Fig. 5). The
act of drawing can serve as a
strategy to place the aesthetic
focus on the visual domain and to
appreciate the musical result as a
coincidental or surprising outcome.
Conversely, visual sketching can
be guided by musical intentionality
and thereby provide means for
expressing musical thought. For
example, scattered points create a
pointillistic appearance both in
image and music, slanted lines
result in ascending or descending
scales, multiple parallel lines
produce musical gestures in
parallel chords, etc.

Figure 5: Screenshot of the
application Little Loops.

Little Loops follows the convention
of the piano roll notation. We
chose this convention because it

provides a straightforward con-
nection between the two-
dimensional layout of a drawing
surface and the discretised
dimensions of musical pitch and
time. The sketching surface is
displayed as a grid into which
users can directly draw with their
fingers. The active grid cells are
then turned into actual notes
through one or several ‘players’
that repeatedly read the content of
a rectangular region of the image.
The user can either choose small
regions and thereby translate
details of the image into short and
frequently looping melodies (hence
the name Little Loops) or
instantiate players that cover the
entire image. In any case, the
resulting music is repetitive and
pattern-based. By experimenting
with the placement and size of the
players, or by changing the
playback speed, the user can
explore the musical potential
‘contained’ within the drawing.

By offering the possibility to
change the scale, Little Loops also
allows the user to encounter more
nuanced musical concepts. The
following scales are available: the
chromatic scale (all keys, default),
a pentatonic scale (black keys
only), a diatonic scale (white keys
only), and whole-tone scale (every
other key). By changing the scale,
the user will obtain a result that
retains the shape of the musical
gestures but differs in its harmonic
colouration. At the same time, the

XXII Generative Art Conference - GA2019

page 6

user can also observe how a
different scale requires a different
discretisation among the vertical
axis of the drawing surface and
thereby alters the appearance of
the image.

3.3 Flashing Flowchart

The application Flashing Flowchart
provides an approach to musical
composition on a higher level of
abstraction than the other two
applications. By means of a
directed graph, it describes a
musical structure as a rule-based
succession of musical events (see
Fig. 6). The formal grammar that is
constituted by these rules is
reflected in the topology of the
graph. By manipulating the graph,
the user can explore the grammar
and the music that originates from
it. The abstraction contained in this
method reflects, at least in our
opinion, the way of thinking that
one can find among professional
composers. Composing music
deals with both the surface of the
music and the underlying structure.
Composing is not only about
finding and selecting sound
material but also about making
decisions on how to arrange it.

Flashing Flowchart allows for
network topologies with closed
loops and arbitrary branching. The
branching enables various paths
through the flowchart. Whenever a
node with more than one outgoing
connection is reached while
traversing the flowchart, the

continuation of the path is
randomly chosen. The resulting
music is characterised by its
variability, by containing repetitions
that are not verbatim but only
similar. This variability lends the
music a particular, albeit modest,
complexity.

Figure 6: Screenshot of the
application Flashing Flowchart.

4. Programming and
Implementation

The individuality of every single
application is an essential aspect
of the whole installation, as is the
juxtaposition of the three appli-
cations. To realise the individuality,
we developed the three
applications and their user
interfaces separately. We tried,
however, to establish certain
common design principles
concerning the interface. As the in-
stallation Klavierspiel was meant to
address musical laypeople, we
decided to keep the user interface
as simple as possible by
presenting only a restricted set of
parameters to the user. To achieve

XXII Generative Art Conference - GA2019

page 7

a high user-friendliness was
paramount for this project.

Each application can be reset to a
default state by pressing the
corresponding button. Also, when
a time of five minutes has elapsed
without any user input, the
application automatically resets
itself. A reset puts all parameters
to their default values, stops any
playback, and presents the user
interface in a minimal and tidy
state.

4.1 Cascading Cubes

The application Cascading Cubes
was programmed in C++ in the
openFrameworks environment. It
employs the Bullet physics engine
for realising a physically realistic
simulation of a piano keyboard and
a marble run. The cubes are
simple shapes that accelerate their
fall towards the keyboard through
gravity. Whenever a cube exceeds
a lower vertical position limit, it is
removed from the simulation and a
new cube is added in its stead in a
random position at the top of the
screen. The cubes can collide with
other cubes, segments of the
marble run, or piano keys. Each of
these elements possesses its own
physical characteristics.
Depending on these
characteristics, the cubes will slide
and bounce off from obstacles very
differently. By changing these
characteristics, the user can obtain
different behaviours, ranging from

a realistic simulation to an
unrealistic caricature of physics.

The simulation controls the piano
automaton in the following manner.
Whenever the rotation of a
simulated piano key exceeds a
lower limit, a note-on event is
triggered. The pitch of the note
depends on the giving piano key.
The note’s velocity is proportional
to the mass of the cube that was
involved in the collision. As the
simulated key returns to its rest
position, it traverses an upper limit,
which in turn causes a note-off
event.

The visual rendering of the
simulation is overlaid with a GUI
that contains the following
elements: a button for starting,
stopping, and resetting the
simulation, numbered buttons for
choosing among a set of
predefined configurations, and
sliders for manually changing the
values for the simulation
parameters. The following
simulation parameters are exposed
through the GUI: the number of
cubes, the mass of cubes, the
restitution of cubes, the lower
rotational limit of the piano keys,
the velocity of the keys returning to
their rest position, and the time
step of the simulation. In addition,
the user can directly interact with
the segments of the marble run.
Once selected, a segment can be
moved around by single-finger
gestures or rotated by two-finger
gestures.

XXII Generative Art Conference - GA2019

page 8

4.2 Little Loops

The application Little Loops was
programmed in Java in the
programming environment
Processing. Its main interface
takes the form of a grid. The grid’s
vertical extension represents pitch.
This extension is subdivided into
88 rows, each of which
corresponds to a piano key. The
horizontal extension of the grid
represents time (running from left
to right). This extension is
subdivided into 150 columns.
Aligned with the grid and displayed
on its right side is a schematic
representation of a piano
keyboard.

By touching the screen, the user
can draw into the grid and thereby
activate individual grid cells. The
user interface provides different
drawing tools: a simple pen to
activate single cells, a triple pen to
activate three cells evenly spaced
along the vertical axis, and a line
tool to activate all cells along a
straight line between a starting and
ending point. In addition, there is
an eraser tool to deactivate the
cells within a four-cell square
region.

A player region appears as an
outlined rectangle that
superimposes a portion of the grid.
Each player region contains a
playhead (indicated as a vertical
line) that continuously moves from
left to right and wraps around when
it exceeds the right edge of its

region. Active cells within a region
are translated into notes whenever
the playhead passes over them.
Each player contains a set of
graphical interface elements that
allow users to change the size or
location of the player’s region, to
start or stop the playback, to alter
the speed of the playback, or to
delete the player. The user is free
to add any number of additional
players whose regions can either
be located next to each other or
overlap.

When the user switches to another
scale, the available vertical
positions for the grid cells change
according to a pattern associated
with the scale. All active cells are
shifted vertically to the nearest
available position. This shift is
reversible; returning to the scale
that was used during drawing
restores a cell’s original location.
No matter which drawing tool the
user has selected, new cells can
only be added at one of the
available positions.

4.3 Flashing Flowchart

The application Flashing Flowchart
was programmed in Java using the
programming environment
Processing. The nodes of a graph
with directional edges represent
instances that can play a musical
event. They hold a set of
parameters that describe the type
of musical event: whether it is a
single note or one of four
predefined chords, and whether

XXII Generative Art Conference - GA2019

page 9

the duration of this event is short,
long or very long. Every node can
be connected to other nodes by an
arbitrary number of outgoing and
incoming connections.

When a node fires, the application
sends out the appropriate note-on
message(s). Then, one of the
outgoing connections is randomly
chosen, and a cursor is added to
this connection. The cursor,
visualised as a little spark, travels
along the connection until it
reaches and triggers the next
node. As the cursor travels at a
fixed speed, the elapsed time until
the next node plays its musical
event is proportional to the length
of the connection. The layout of the
graph and the relative distances
between interconnected nodes
determine the inter-onset-intervals
of the musical events, which in turn
define a rhythm. There can be
several cursors at the same time,
which leads to a canonic structure.

The GUI contains the following
elements: two buttons for stopping
and resetting the simulation, one
button to add a new node to the
graph. The nodes themselves are
visualised as circles with another
four buttons on it: a start button to
trigger the node, a button to delete
it, a button to open a menu to
specify the node’s parameters, and
a button to sprout a new,
connected node. The nodes can
be dragged around on the
touchscreen. When a new node is
created, it appears as ‘ghost’ to be

first moved to its definite place
before it is instantiated. In this
provisional state, a node can be
dragged over another node with
which it then merges. This
behaviour serves to create loops in
the flowchart. The parameters of a
newly created node are set to
‘single note’, ‘short duration’, and a
random pitch.

5. Results

In order to gain an understanding
of how users interact with the three
different applications, we gathered
information with regard to the
users’ behaviours, interface usage,
and achieved results. The users’
behaviours were evaluated through
observation and lead to
anecdotical evidence about
different forms of engagement. We
made these observations during
our on-site supervision of the
installation.

Further information about the user
interaction was acquired through a
mechanism integrated into each
application that stored the state of
the interface as snapshots at a
regular interval of one minute.
Based on these snapshots, a small
statistical evaluation of the
frequency of usage of interface
elements was conducted. From
this evaluation, insights could be
gained concerning the usability of
the interface and the users’
willingness to delve deeper into
some of the more nuanced

XXII Generative Art Conference - GA2019

page 10

possibilities that the applications
provide.

A manual comparison between the
application states that were
reconstructed from the saved
snapshots led to a grouping of
these states into different
categories. The identification of
these categories alongside with the
frequency of their appearance
provided cues about the focus of
the users’ attention and the
exhaustiveness of their attempts to
reach interesting results.

The evaluation revealed patterns in
the users’ engagement that are
similar among the three
applications. Overall, the
installation enjoyed great attention
among younger people, in
particular among children. The
attractivity for children was
particularly prominent for
Cascading Cubes and Little Loops.
In case of Flashing Flowchart,
predominantly adult people were
engaging with the interface.
Concerning the duration of user
engagement, three types could be
distinguished. Some users would
leave the installation without trying
to interact with one of the
applications. Others spent only a
brief amount of time with each of
the applications. These users were
satisfied once they acquired an
initial understanding of the
functionality of each interface but
did not feel compelled to explore
its possibilities further. Finally,
several users were sufficiently

fascinated by at least one interface
that they would dedicate an
extended period of time to their
attempt to achieve an satisfying
musical outcome.

The following three subsections
describe the results obtained from
the evaluation that are distinct
among the three applications.

5.1 Cascading Cubes

Through observation, we found
that some users were initially
clueless concerning the means of
interaction. Several users tried to
touch the keys of the simulated
piano keyboard directly. This type
of failed interaction usually
happened when the simulation
showed no falling cubes.
Eventually, the users found and
pressed the play button, after
which the observation of the falling
cubes and their effect on the sound
production was sufficiently self-
explanatory to understand the
functioning of the interface.

The saved states of the interface
were statistically analysed to
distinguish between the following
types of interaction: Selection of
predefined settings (4%), change
of simulation parameters (56%),
change of position and/or rotation
of marble run segments (40%).

The following table shows a
categorisation of the different
marble run designs and the fre-
quency of their occurrence (for

XXII Generative Art Conference - GA2019

page 11

representative examples of these
categories see Fig. 7).

5.2 Little Loops

Through observation, we found
that all users would immediately
begin to draw, but some of them
were confused by that fact that
their drawings were not
immediately audible. These users
spent some time struggling with
the interface until they figured out
that they had to place a player
above their drawing.\

Based on a statistical evaluation of
the snapshots, it became evident
that most users did not bother to
work with more than one or two
players (see Fig. 8). It must even
be assumed that this number
includes the player that the
application provides when reset to
its default state. Most of the users
ignored this player and left it
running idle without any content.
The fact that the users mostly
utilised only very few players
possibly indicates that the
relationship between a drawing
and the musical result is more
readily understandable in case of a
single player covering the entire
drawing. Splitting up the drawing
into several regions to be read by
individual players results in a multi-
layered musical result which
seemed to be too complex for most
users.

XXII Generative Art Conference - GA2019

page 12

Figure 7: Representative examples
of categories of marble run
designs. A: Default,
B: Random/Few,
C: Random/Many, D: Filter,
E: Slide, F: Barrier, G: Steps,
H: Basket, I: Funnel, J: Keyboard
Abuse.

Users rarely explored some of the
more advanced possibilities
provided by the application. In
91.6% of all snapshots, users used
the chromatic scale, which
corresponds to the application’s
default setting. Other scales
appeared with the following
frequencies: diatonic scale 1.4%,
pentatonic scale 3.8%, whole-tone
scale 3.2%. Very similarly, in
90.7% of all snapshots, the user

used the default ‘simple pen’ as a
drawing tool.

Figure 8: Distribution of the
number of simultaneously opened
players on the piano roll.

An inspection of the reconstructed
application states led to the
identification of the following four
different types of drawings (for
representtative examples of these
categories see Fig. 9).

XXII Generative Art Conference - GA2019

page 13

Figure 9: Representative examples
of the four drawing categories: A:
Figurative, B: Line, C: Scribble, D:
Writing.

Among all the user drawings, those
that correspond to the category
‘Lines’ were the most prominent.
This indicates that users readily
understood the drawing
functionality as a method to test
out musical ideas. It can be
assumed that the appearance of
the interface as a piano roll grid
and the presence of a real piano
helped to nudge the users’
intention into a musical direction.
For those users that created
drawings of the categories
‘Figurative’ and ‘Writing’, the
application appeared first and
foremost as a graphical tool that
allowed to explore the musical
rendition of the drawing as an
additional feature. These users
were, for instance, interested in
hearing how their name sounds on
a piano.

5.3 Flashing Flowchart

We observed that the users
engaged either only for a short
moment with this interaction or for
a long time. The fact, that some of
the users spent only little time in
front of the screen can indicate that
the interaction is too complicated,
the musical result does not sound
catching right from the beginning,
and the application provides no
game-like challenge. Concerning
interaction, most of the users failed
to figure out how to close a loop in
the flowchart (or did not even try to
find out). Without loops, the
musical playback ends after only a
few notes, which is not particularly
attractive. Those users, in turn,
that spent a lot of time with this
application were driven by a
musical interest and tried to create
their own, small compositions. Pri-
marily, this interaction seemed to
attract people with prior knowledge
in music-making.

We had to acknowledge that the
application Flashing Flowchart is
the most demanding. The users
had to spend some time to explore
the interaction to find out how to
build a musically interesting
flowchart. Moreover, it is an
application that addresses mostly
people who are able or willing to
engage with musical abstraction. In
the light of this project's aims, to
present different approaches to
algorithmic composition, this
limitation seemed acceptable
because it is presented in

XXII Generative Art Conference - GA2019

page 14

contrasting juxtaposition with the
other interactions.

Most users did not further explore
the parameter settings as can be
seen in the fact that for the majority
of the nodes recorded in the
snapshots the default settings
were left unchanged (70.1% ‘single
note’ and 78.5% ‘short duration’).
The number of nodes that
appeared simultaneously in a
flowchart ranges up to 19 (a
maximum given by the size of the
screen). The distribution of nodes
can be seen in Fig. 10.

Figure 10: Distribution of the
number of nodes per the flowchart.

We categorised the snapshots with
respect to the topology of the
flowcharts as listed in the following
table (for representative examples
of these categories see Fig. 11).
The numbers affirm the
observation that many users had
difficulties in finding out how to
create a closed loop on the screen.

Figure 11: Representative
examples of the four flowchart
categories: A: Continuous Iteration,
B: Continuous Variation,
C: Terminating Variation, D: One-
Shot.

6. Conclusion

The presentation of the installation
Klavierspiel at the Design Biennale
Zurich provided an excellent
setting to communicate to a non-
expert audience some of what we
consider to be core principles of
employing generative systems in
musical composition. To gain as

XXII Generative Art Conference - GA2019

page 15

many insights as possible from the
visitors’ response to this setting, an
evaluation was conducted that
combined observation of user
behaviour, statistical analysis of
interface usage, and category
formation of achieved results. We
believe that such a combination
provides insights that can be of
value for any artist working in the
field of generative and interactive
art and music. Among others, such
a combined evaluation allows a
discrimination between a visitor's
level of understanding concerning
the possibilities of interaction
versus the visitor's level of
comprehension of the generative
principles. Furthermore, this
combined evaluation also permits
to assess the diversity of results
that a generative system can
generate in response to a user’s
first-time interaction and these
results can convey information
about a user’s motivation and
intention to interact in the first
place.

Our motivation for realising this
generative installation was
predominantly a didactical one. For
this reason, not all of the design
decisions that were made are
readily transferrable to other, more
artistic approaches. If nothing
more, this article highlights that for
any interactive and generative
artwork that is meant to be used
and experienced by non-expert
users, an informed decision has to
be made by the artist concerning

the balancing of understandability
and complexity. The three
applications exemplify different at-
tempts of finding such a balance.
They do so by choosing distinct
levels of abstraction, order, and
randomisation while being similar
in their sacrificing of autonomy in
favour of a high level of control,
and their limiting of the diversity of
possible outcomes in favour of
more readily accessible results.
We believe that by documenting
the rationale for these decisions,
they can also help to inform artistic
strategies that deal with the
development of sophisticated
generative systems which are
meant to be interacted with by a
professional audience.

7. References

[1]
https://www.designbiennalezurich.c
h (accessed: November 2019).

[2] Philippe Kocher: “The Piano
Automaton as an Instrument for
Algorithmic Music”, Proc. of the
Generative Art Conference,
Verona, 2018.

[3] Winfried Ritsch: “Robotic Piano
Player Making Pianos Talk”, Proc.
of the Sound and Music Computing
Conference, Padova, 2011.

