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Abstract 
“Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, 
without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable 
of a stern perfection such as only the greatest art can show.” Bertrand Russel 

Typical design thinking takes place within a rectangular coordinate system of non-curved three-
dimensional Euclidean space. The usual coordinates, Cartesian coordinates, provide a natural way of 
segmenting space into rectangular prisms, and these are then used as a basis for thinking about, and 
constructing shapes within, that space. This approach, however, is pretty rigid, given that there are 
many more interesting, curved ways of segmenting space. Here we will propose a paradigm to break out 
of that restriction by using curved space, but while still using a rectangular coordinate system. Inspired 
by [2], we will describe coordinate systems in which straight lines become arcs of circles, and thusly, 
rectangular prisms become ones with arcs of circles for edges, and with faces that are swept out by 
circles, as parts of Dupin cyclides. We will discuss how one could use these systems of coordinates to 
re-think design in three-dimensional space. 
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“grid lines” 

1michael.jimenez@tuwien.ac.at 

2mmiro@geometrie.tuwien.ac.at 
Key words: curved space, coordinate systems, Dupin 
cyclides 
Main References: 
[1] Bobenko, A.I. & Huhnen-Venedey, E. Geom Dedicata 
(2012) 159: 207. https://doi.org/10.1007/s10711-011-
9653-5 
 

 

 

 
  



GA2018 – XXI Generative Art Conference 

Page n. 237 
 

 
 

FROM LINES TO CIRCLES: RETHINKING DESIGN 
COORDINATES 

 
Jimenez, Michael Robert1 and Lara Miró, María2

 

Austria, Technische Universität Wien, Institute of Discrete 
Mathematics and Geometry www.tuwien.ac.at 

1e-mail: michael.jimenez@tuwien.ac.at 
2e-mail: mmiro@geometrie.tuwien.ac.at 

(authors listed alphabetically) 
 
 

Abstract 
 

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, 
without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of 
a stern perfection such as only the greatest art can show.” Bertrand Russel 

 
Typical design thinking takes place within a rectangular coordinate system of non- curved 
three-dimensional Euclidean space. The usual coordinates, Cartesian coordinates, provide a 
natural way of segmenting space into rectangular prisms, and these are then used as a basis 
for thinking about, and constructing shapes within, that space. This approach, however, is 
pretty rigid, given that there are many more interesting, curved ways of segmenting space. Here 
we will propose a paradigm to break out of that restriction by using curved space, but while still 
using a rectangular coordinate system. Inspired by [2], we will describe coordinate systems in 
which straight lines become arcs of circles, and thusly, rectangular prisms become ones with 
arcs of circles for edges, and with faces that are swept out by circles, as parts of Dupin cyclides. 
We will discuss how one could use these systems of coordinates to re-think design in three-
dimensional space. 

 

 
 

 
Generation of part of the Ponte di Castelvecchio in Verona in curved space; the lower image shows, in black, the “grid lines”, which are arcs 

of circles, that were used for the basis of the design. 
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0. Philosophical interpretation 
 

Since ancient times, humans have sought to find ways to discern the spatiality of the real world, 
and the best way to handle interacting with, and designing within, it. With the help of the tools 
of perception, like perspective, they have directed with the laws of Nature to create and 
develop. In the case of perspective, this means finding a meaningful way to represent of objects 
from a specific viewpoint on a two- dimensional plane, using the key notion of relative dimension 
to convey depth. At the heart of this, is the natural, rectilinear use of rectangular (or Euclidean) 
coordinates. 

 
And when it comes to creating, and handling, three-dimensional objects, people have 
gleaned much with this usual rectilinear approach. However, it is a system that is quite rigid, 
in that the main building components are non-curved – for example lines, planes, etc. While 
these are, in many cases, the most-graspable, and easy-to- draw, there is much more that 
three-dimensional space can be: namely, it can be curved. 

 
To step in this direction, we consider the natural generalization, Möbius Geometry, where one 
uses circles, instead of lines, and spheres, instead of planes, etc.[3] By way  of  realization,  and  
implementation,  we  do  this  motivated  by  the  paper  by Bobenko and Huhnen-Venedey [2], 
in which they formulate how one could segment three-dimensional space into specially-curved 
hexahedrons instead of regular cubes. For a comparison of these two, see Figure 0. The further 
novelty of this approach is that we developed a workflow to deform a rectilinear object, into a 
curved one, within this framework. The implementation, and example workflow, of this is 
discussed in Section 1, while the mathematical foundations of this are discussed in Section 2. 

 
 

 
Figure 0: Left Cubes segmenting three-dimensional space. Right Specially-curved cubes segmenting three-

dimensional space. (Made in Rhinoceros 5) 
 

1. Motivation and Implementation 
 

Motivated by the paper by Bobenko and Huhnen-Venedey [2], we have implemented a means of 
exploring and manipulating “discrete triply-orthogonal (coordinate) systems”. These “systems” 
are formed of hexahedrons, in which the points of each face lie on a circle, and in our 
implementation, to reduce the number of degrees of freedom, we have used the further 
constraint that all points on diagonal also lie on a circle. Further discussion of this is in Section 
2. 

 
 

1.1 Application of Miquel's Theorem to Construct a Hexahedron 
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At the basis of our implementation, we use Miquel’s Theorem in two dimensions. This 
theorem states that, given a triangle          with arbitrary points    ,    , and     on the respective 
sides      ,      , and      , the three circumcircles to the triangles           , 

, and always intersect in a single point, called the Miquel point; see 
Figure 1 for a depiction of this. 

 

 
Figure 1: Miquel’s Theorem in two dimensions. (Made in CorelDRAW x7) 

 
In order to apply this theorem to a hexahedron with the aforementioned constraints, we first 
stereographically project the hexahedron to the plane; see Figure 2a. The result of this 
application of Miquel’s theorem is summarized as follows, as shown in Figure 2a/b: given four 
blue points, and choosing the green point on the orange circle, the black points can be 
uniquely determined via Miquel’s Theorem, and the red point is the Miquel point. 

 
Figure 2a: Stereographic projection of a cube. (Made in GeoGebra 5) 

 

 
 

Figure 2b: Projection of the cube on the plane, with the circles from the three-dimensional version of 
Miquel’s Theorem. (Made in CorelDRAW x7) 
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1.2 Discrete Triply-orthogonal System 
 

We are going to focus on the lattices with an equal number of hexahedrons in their three 
spatial directions. For this type of lattices, the number of manipulable points is 

,  with  one  point  being  chosen  on  a  circle,  where is  the  number  of 
hexahedrons in one direction – this is degrees of freedom – shown in Figure 
3, left. In this way, if we move any one of those points, the entire lattice will be 
modified so that the faces, and diagonals, lie on circles. 

 
Once we have defined the lattice, we can pick a frame at one of its points, which we will use to 
create faces, which will be discussed more in Section 2. This frame is propagated across the 
mesh by defining it at adjacent points with a reflection across the bisecting plane. From these 
frames, circular arcs are determined between adjacent points, so that it is tangent to the frames 
at each point, as in Figure 3, right. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Left Manipulable points in the lattice. Right The resulting discrete triply-orthogonal system. 
(Made in Rhinoceros 5) 

 

1.3 Example 
 

To better understand design within this framework, we will go over an example of how it can 
be used to create curved elements in three-dimensional space. We will break out of the 
restrictions of the traditional (non-curved, Euclidean) space by using the curved space from the 
discrete triply-orthogonal systems discussed before. 

 
For the choice of object to be represented, we think that there is no better option than a 
part of the Ponte di Castelvecchio located in Verona, as in Figure 4a, top. First, we 
delineate the model into hexahedrons, as shown in Figure 4a, middle. Then, we choose a 
frame at one of the corners, to generate a curved version, as shown in Figure 4a, bottom. 
Lastly, we refine the model using the circular arcs from the faces to construct details, obtaining 
the final model, as shown in Figure 4b. 
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Figure 4a: Starting steps in workflow to generate a curved model: Top Starting model. Middle delineating the 
model into hexahedrons. Bottom Getting the curved model after a choice of a frame. (Made in Rhinoceros 5) 

 

 
 

 
Figure 4b: Last steps in workflow to generate a curved model: Top Refined curved model using circular arcs. 

Bottom Final model. (Made in Rhinoceros 5) 
 
 
2 Mathematical Structure 
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In this section, we will go over the mathematical underpinnings of our article. The majority of it 
comes from the paper by Bobenko and Huhnen-Venedey [2], which formulates a notion of a 
“discrete triply-orthogonal system”. 

 
2.1 Smooth Case 

 
A “triply-orthogonal system” is best described with a familiar example, Figure 5: the usual way 
of thinking about three-dimensional space, in which, at every point, there is a natural notion of 
the   -,  -, and  -directions. These directions are, at each point, all orthogonal to each other, 
which is to say, they are triply-orthogonal. Moreover, these directions are consistently 
parallel: all the   -directions are parallel to each other,  and  so  are  the   -  and   -
directions,  respectively.  The  collection  of  these directions at each point is called a frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The usual triply-orthogonal system used in three-dimensional space, shown as a collection of frames. (Made 
in Mathematica 11) 

 

To generalize this, one could think about what would happen if the choice of frames at each 
point was allowed to vary, keeping the triple-orthogonality but relaxing the parallelity, as in Figure 
6. In this way, one would obtain generally a triply-orthogonal system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Another example of a triply-orthogonal system in three-dimensional space, shown as a collection of 
frames. (Made in Mathematica 11) 

 

 
 

2.2 Discretization 
 

To make a triply-orthogonal system more tangible and more-easily implementable, it is possible 



GA2018 – XXI Generative Art Conference 

Page n. 243 
 

to discretize the notion, as is done in a paper by Bobenko and Huhnen- Venedey, [2]. Building 
off well-established discretization theory for surfaces, they call a lattice of points a circular net 
[2, Definition 3.1], which is a discretized triply- orthogonal system, if there is the constraint 
that all corresponding sets of points lie on circles, as depicted in Figure 7. With that constraint, 
there are many examples in which the points are not regularly-spaced, as in Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: A circular net, which has regularly-spaced points: there are circles through sets of points 
corresponding to each face of each cube. (Made in GeoGebra 5) 

 

 
Figure 8: A circular net, which does not have regularly-spaced points. (Made in GeoGebra 5) 

 
To allow for more deformation, Bobenko and Huhnen-Venedey add in a choice of a frame for any 
single point of the lattice; this frame is then propagated across the lattice to form a cyclidic 
net.[2, Definition 3.3] This frame enables sections of special surfaces, called “Dupin cyclides”, 
to form the faces, instead of simple planar ones, which  gives  rise  to  the  qualifier  cyclidic  in  
their  name.  These  surfaces,  Dupin cyclides, are surfaces characterized by being made up of 
two perpendicular families of circles, in a special1  way, which is that they follow directions 
where the surface curves most. An example of a Dupin cyclide is in Figure 9, along with a 
highlighted section, which could be a face in a cyclidic net. And, an example of a cyclidic net is 
in Figure 10. In this way, they have described a way of breaking up three-dimensional space into 
cyclidic hexahedron pieces, determined by a lattice and a frame. 
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Figure 9: A Dupin cyclide, shown with its two special families of circles, and a highlighted section. 
(Made in Mathematica 11) 

 
 
 

1 These two families of circles are the principal curvature lines of the surface. 
 

 
 

 
 

Figure 10: A cyclidic net, shown with orange circles, which constrain the lattice, and with black circular-
arcs, which are edges of the cyclidic hexahedrons. (Made in Rhinoceros 5) 

 

 
 

The natural next question is: how does one think about the inside of those cyclidic hexahedrons, 
so that it is consistent with this discretized triply-orthogonal system, of which  it  is  part?  
Luckily,  this  question  is  answered  by  Bobenko  and  Huhnen- Venedey: they show that it is 
possible to parametrize the inside of each one of those cyclidic heaxhedrons with their own three 
families of triply-orthogonal Dupin cyclides. [2, Theorem 3.9, Corollaries 3.10 & 3.11] This is 
done in such a way that the intersection of any the Dupin cyclides in any of those families with 
the faces of the cyclidic hexahedron, is part of a circle from the families of circles that make 
each of them up. See Figure 11 for a depiction of that. 
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Figure 11: Parametrization of the inside of a cyclidic hexahedron, with two Dupin cyclides shown from each three 
families, distinguished by colors. (Made in Rhinoceros 5) 

 

3.3 Remark on the Implementation 
 

In order to simplify implementation, more circles were used to constrain the lattice, thereby 
reducing the degrees of freedom; see Figure 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: These are circles constraining the lattice in the implementation, where the circles in a darker color 
are the circles not present in the constraints of a generic circular/cyclidic net. (Made in GeoGebra 5) 

 
With these further circles and a choice of a frame at one of the points, there is a further 
implication that the resulting cyclidic hexahedron is a Möbius transformation of a regular cube; 
this is to say that the cyclidic hexahedron can be gotten from a regular cube after a series of 
translations, scalings, rotations, reflections, and inversions about spheres.[1] 
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