
20h Generative Art Conference GA2017

Deconstruction/Reconstruction: A Pedagogic Method for
Teaching Programming to Graphic Designers

Stig Møller Hansen, Ph.D. Student

Department of Digital Design and Information Studies, Aarhus University, Denmark
www.au.dk

e-mail: smh@cc.au.dk

Abstract

This paper proposes, describes and exemplifies a hands-on, experiential pedagogic
method, deconstruction/reconstruction, specifically designed to introduce graphic
design students to programming in a visual context. The method uses pre-existing
commercially applied graphic design specimens as its main material to contextualize
programming into a domain familiar to the audience. Observations of the method
used in teaching are discussed, and its potential evaluated based on feedback
provided by the students.

1. Introduction

Being code-literate is considered a crucial ability in today’s society. Permeating
through all parts of contemporary culture, this view is also influencing the education
of graphic designers, prompting students to recast their existing skills to fit the
medium of the code and educators to develop new courses that help build this
literacy [1, 2, 3]. However, most graphic design students perceive programming as
an abstruse skill they will never be able to master, and have a hard time trying to
connect the activity of programming with the essence of their profession; crafting
visual artifacts. Although many attempts have been made to teach programming to a
visually oriented audience, most of them use seemingly random layouts, bouncing
balls or simple characters in monochrome color schemes (e.g. [4, 5, 6]) to illustrate
programmatic principles. To an audience, who equate a lack of aesthetics with a lack
of relevance, neglecting the importance of the visual quality causes them to lose
interest. To encourage graphic designers to explore programming as a creative tool,
it is vital that new teaching strategies be developed, tailored to fit how this specific
audience acquires new knowledge. In a contribution towards building computational
literacy among graphic designers, this paper proposes and describes a hands-on
experiential pedagogic method, deconstruction/reconstruction, specifically designed
to introduce programming in a visual context.

2. Background and influences

For nine years I have taught introductory programming classes to undergraduate
graphic designers at The Danish School of Media and Journalism. During this time, I
have observed some recurring critical issues that negatively affect student retention,
engagement, and learning outcome:

20h Generative Art Conference GA2017

• Students find it hard to relate the activity of programming to their line of work.
• Students feel intimidated by the prospect of working with mathematics, logic,

and structure.
• Students respond poorly to a lack of aesthetic quality in the output produced

by their code.
• Students are easily distracted when asked to consider aesthetic issues. They

quickly obsess over design-related issues, forgetting that their primary goal is
to learn how to program.

• Students lack a starting point for their knowledge construction. As novice
programmers they spend their time in the bottom half of Anderson and
Krathwohl's Taxonomy [7], not yet in a position where they feel confident
about programming to be creative with it.

• Students respond negatively to passive auditorium lectures and abstract,
verbal explanations.

• Students are deterred by strange syntax and indecipherable error messages.

Seeking to alleviate these issues, I decided to develop a new pedagogic method
specifically tailored to accommodate the learning needs of my students. To inform
the design of the method, I summarized my observations into a set of guidelines:

• The link between programming and crafting of visual artifacts must be clearly
visible.

• The output of the programming exercises must be visual
• The output must possess an aesthetic quality that makes it useful and sellable

at a professional level.
• Students must be given an "object-to-think-with" [8], a cognitive artifact to

serve as a link between their pre-existing internalized mental structure ("how
to create graphic design") and the formation of new abstract knowledge ("how
to program").

• Students must be given a fixed goal to provide a clear focus. Also, a fixed goal
can serve as a measuring stick allowing students to continuously evaluate
their progress.

• Students should not be asked to consider aesthetic issues to keep them
focused on learning how to program.

• Mathematics, logic, and structure should only be taught when the students
encounter a need for it, preferably by letting the students investigate the topic
themselves, guided by the teacher.

• Students must be given the same material to encourage sharing of knowledge
and discussion around a common base.

• Students must be actively engaged in the task of programming to build hands-
on experience.

• Students must work in a programming environment that provides a low
threshold (easy entry to usage for novices), high ceiling (powerful facilities for
sophisticated users), and wide wall (a small, well-chosen set of features that
support a wide range of possibilities) [9].

I chose to build the method around the recreation of pre-existing design specimens.
This decision resolved several issues at once: It established a direct link between
programming and design, introduced a relatable "object-to-think-with" that doubled as

20h Generative Art Conference GA2017

a fixed target, thus eliminating the risk of students losing focus by being having to
make aesthetic choices.

Constructionism was chosen as the theoretical foundation of the method. Among
other things, constructionism let students use the information they already know
("how to create graphic design") as a foundation for acquiring more knowledge ("how
to program") in a different domain. Also, constructionism holds that learning happens
most effectively when students are active in making external artifacts they can reflect
upon and share with others. Finally, constructionism prescribes that the teacher must
take on a mediational role as opposed to an instructional role, assisting students to
individually understand problems in a hands-on way.

Guzdial [10, 11] suggest that teaching programming needs to be contextualized and
meet the needs of the learners. The target audience is intended to merely be
“programming tourists,” [12], thus a rigorous adherence to “correct” Computer
Science terms was abandoned in favor of a terminology that better helped students
build cognitive models of programmatic principles. Another key factor in favor of
contextualization is to make apparent the usefulness of programming in the student's
profession.

A term introduced by Papert [8] and later popularized by Wing [13], Computational
Thinking deals with thought processes involved in formulating a problem and
expressing its solution(s) in such a way that a computer—human or machine—can
effectively carry out [14]. Key principles in Computational Thinking are:

• Decomposition (breaking down a complex problem into smaller, more
manageable parts)

• Pattern recognition (looking for similarities among and within problems)
• Abstraction (focusing on the important information only, ignoring irrelevant

detail)
• Algorithms (developing a step-by-step solution to the problem, or the rules to

follow to solve the problem).
These principles influenced the design of the method and are embedded in the
activities therein.

Finally, the work of Stahl [15] also informed the design of the method. According to
Stahl, transforming tacit preunderstanding into a computer model happens in a series
of successive steps. In his discussion, Stahl, among other things, suggests a
taxonomy of classes of information [15, pp. 178-183]. This taxonomy greatly inspired
the design of the method to be a number of sequential steps divided into two distinct
phases.

3. Method described

The deconstruction/reconstruction method consists of two successive phases,
deconstruction, and subsequent reconstruction. Each phase has three steps.
Activities associated with each step are briefly described in figure 1. A detailed
account of how the method is applied in practice is given in section 4 of this paper.

20h Generative Art Conference GA2017

Figure 1: Schematic overview of the deconstruction/reconstruction method.

The purpose of the deconstruction phase is to keep the students in their comfort
zone by letting them rely on their pre-existing knowledge of graphic design principles
and terminology to deconstruct an existing design product to form the basis of the
reconstruction phase. The purpose of the reconstruction phase is to let students
discover programming as a practical craft acquired by incremental conversion of their
notes from the deconstruction phase into code, thereby constructing a self-contained
design system capable of reproducing the chosen specimen, and acting as a
platform for playful discovery through manipulation of variables and the code itself.

As the student completes each step, he/she gradually shifts from using their existing
skills in a familiar domain (Graphic Design) toward acquiring new skills in an
unknown and unfamiliar domain (Computer Science).

Material
As its main material, the method uses pre-existing commercially applied graphic
design specimens. Examples of these are posters, packaging, logos, typography,
signage, bank notes, stamps, etc. Specimens are handpicked by the teacher based
on their ability to be deconstructed, meaning that they must exhibit distinct visual
characteristics indicating that an underlying system or set of rules has played a key
role in their creation. Specimens should be easily replicable using geometric
primitives, basic linear transformations (e.g., translation, rotation, scaling) and control
flow statements (e.g., decision-making, looping, branching). A selection of suitable
specimens that meet these criteria is shown in figure 2 to provide an idea of the
visual genre.

20h Generative Art Conference GA2017

Figure 2: A selection of specimens suitable as
material for the method.

Figure 3: Poster by Enzo
Mari (1963)

4. Method exemplified

In this section, the activities associated with each step of the deconstruction/
reconstruction method are discussed using Enzo Mari's 1963 poster "Arte
Programmata: Kinetische Kunst" [16] (figure 3) as example. Processing [17], a
popular Java-based language for learning how to code within the context of the visual
arts, is used as the programming environment.

Step 1: Select
Guided by his subjective aesthetic preference, a student, Peter, chooses the Arte
Programmata poster from the set of specimens provided by the teacher.

Step 2: Describe
Taking notes using pen and paper, Peter describes the poster's immediately visible
components:

• "The poster is portrait format."
• "The background color is brown."
• "The upper part of the poster contains one 5x5 grid of black squares with inset

spacing taking up the entire width of the poster excluding a border margin."
• "Each black square contains one white square of varying size."
• "The white squares increase then decrease in size while forming a spiral

pattern."
• "The white square is fixed to the lower right corner of the black square."
• "The lower part of the poster has a white all-caps title spanning the entire

width of the poster excluding the border margin + an additional black text set
in a small font size aligned to the left."

• "Separating the 5x5 grid and the typography is a small white logo aligned to
the left."

20h Generative Art Conference GA2017

Peters observations are described using graphic design terminology familiar to him.
Embedded in his description are clues about features that he must consider in his
code (e.g. "square," "grid," "border margin," "inset spacing".)

Step 3: Analyze
Still using pen and paper as his material, Peter identifies and formalizes the
underlying math, logic and rules needed to construct the poster. In the previous step,
Peter loosely described a spiral pattern of oscillating white squares. In this step, he
must make additional considerations to explicitly describe this spiral pattern: Is it
rotating left or right? Does it go inside out or outside in? Where are its starting and
ending points? Also, looking at the oscillating squares: How many oscillations? What
are the minimum and maximum size? What principle is used to calculate the rate of
change in size: Sine waves? Linear interpolation? Exponential change? These
observations do not translate into simple built-in commands. They require rules to be
established and algorithms developed. To formalize a thing like oscillation, something
that is otherwise easily (but imprecisely) verbalized, Peter is forced to look into
mathematics of oscillating functions, realizing that even a seemingly simple thing like
oscillating movement can be accomplished using many different techniques all of
which ultimately affect the visual style of the output. No code is written yet, although,
during his research, Peter comes across a pseudocode spiral algorithm that helps
him understand how spiral patterns are constructed in a two-dimensional grid.

Step 4: Convert
In this step, Peter launches Processing, as he transitions from paper and pen to
code. By using his notes from previous steps as starting point, Peter gets an idea of
what his program must contain and do. Sampling the original artwork, he converts
colors from broad descriptions to specific color codes ("Brown" = #5A4531, "White" =
#F7F1E5 and "Black" = #000000). Squares are drawn using the built-in rect()
command. The 5x5 grid is constructed using two nested for()-loops representing x-
coordinates and y-coordinates respectively. To correctly place the black and white
squares, functions like pushMatrix() and popMatrix() in conjunction with
translate() is used. Investigating the sin()-function, Peter chooses a sine wave
moving from 0 to π to achieve the oscillating white squares. In search of a way to
mimic the spiral pattern, Peter modifies pseudocode found online to fit his needs. The
typography can be made either as text or inserted as an image. Painstakingly
recreating complex typography letter by letter serves no point; also, students might
get distracted from programming when trying to correctly identify, download and
install the font. Therefore, in this example, Peter was asked to simply cut out the
original typography as a separate image using Photoshop, and insert it into his
program as a static image. As Peter converts his notes from steps 2 and 3, he
gradually constructs a program capable of recreating the original specimen. Besides
acting as an "object-to-think-with," the original poster also doubles as a visual
reference used by Peter to measure his progress and evaluate the behavior of his
program.

Step 5: Explore
In this step, Peter must produce alternative versions of the original poster without
modifying his code. By only changing variables, in this particular case using
Processings "Tweak Mode," instant feedback is provided allowing for real-time
exploration of the solution space inherently described by the code. A set of Peter’s

20h Generative Art Conference GA2017

possible alternatives to the original specimen, obtained by tweaking the variables in
his code, can be seen in figure 4.

Figure 4: Alternative versions obtained by tweaking variables.

Step 6: Tinker
Having gained an understanding of the "mechanics" of the code, Peter begins
modifying the code itself. Now, more radical solutions emerge. The result of Peters'
tinkering with his code as well as continued tweaking of the variables can be seen in
figure 5.

Figure 5: Alternative versions obtained by modifying code and tweaking variables.

5. Method used in teaching

I used deconstruction/reconstruction method in two introductory programming
courses taught at The Danish School of Media and Journalism. Participants were
classes of 20-24 undergraduate graphic design students (ages ranging between 21-
33 years, 50/50 gender ratio) with little to no prior programming experience. The aim
of the courses was to equip the students with sufficient cognitive and practical skills
to enable them to conceive and execute custom made code-driven design systems.
The deconstruction/reconstruction method was used as a recurring daily exercise in
the first week.

20h Generative Art Conference GA2017

As prescribed in the method, I chose a sample set of 20 pre-existing graphic design
specimens from a curated collection [18]. The entire set of specimens made available
as handouts and digital files to the students is shown in figure 6.

Figure 6: The collection of chosen specimens taped to the blackboard in the studio
provided a quick visual overview.

Step 1: Select
Initially, choosing a specimen was a simple matter of personal preference and daily
mood. Later, the students’ choice was influenced by their newly acquired skills. If
they had learned how to make a two-dimensional grid, students tended to choose a
specimen that would allow them to reuse this programmatic feature in addition to
posing a new challenge.

Step 2: Describe
The students felt confident as they began to describe their chosen specimen. Trained
observers of graphic design, students had few problems describing the immediately
visible components. Perhaps overly confident in their own ability to memorize their
findings, I found it necessary to stress the importance of noting all observations on
paper. Students spontaneously developed the habit of using Photoshop's eraser and
cloning tool to remove all design components besides the background and
typographic elements. This provided an authentic background to import in step 4 to
make the output look almost identical to the original specimen.

Step 3: Analyze
Students began leaving their comfort zone when asked to explicitly describe the
math, logic, and rules of their chosen specimen. Certain relations and behaviors were
easily described using basic mathematical principles (e.g., sine/cosine, Pythagoras,
linear transformations) while others relied on formulas or phenomenon one could not
expect the students to know beforehand (e.g., Fibonacci series, recursion, moiré). I
assisted the students in researching any formulas or techniques they might need to
recreate the specimen, being careful not to provide explicit answers. This step
provided a great opportunity to for the students to practice and utilize Computational
Thinking principles as discussed in section 2 of this paper.

20h Generative Art Conference GA2017

Step 4: Convert
Launching Processing and converting notes into code, students gradually discovered
how variables, arrays, functions, classes, as well as other programmatic building
blocks, helped them extend their static system to become a fully functioning, dynamic
system capable of replicating the original specimen. This step was – without a doubt
– the most challenging step for the students. They spent the majority of the time
working on the daily assignment completing this step, slowly grasping programming
logic, structure, looking up syntax in the language reference, and tracking down
bugs.

Step 5: Explore
In this step, students used Processing’s ‘Tweak Mode’ to manipulate variables with
instant visual feedback. They would bend, stretch and inevitably break their
programs. Immersing themselves in playful experimentation, students kept
generating new variations from the seemingly infinite number of possibilities, always
curious to discover what output their system would generate next. Students were
asked to capture a visual log of their progress to show the extent of the visual
diversity that their system was capable of producing. Examples from a students'
visual log are shown in figure 7.

Figure 7: A students attempt at recreating the original specimen (big image, left) [19]
using code, and his subsequent experiments modifying the identified variables and
the code itself to produce radically different versions (small images).

Step 6: Tinker
Spurred on by their active experimentation in step 5, students began to modify the
code itself. Through this process, students discovered that code, although immaterial
and intangible, still possess plasticity and is highly malleable. Their confidence in
their abilities grew, and this kind of tinkering and hacking was encouraged to support
their urge to experiment. This step gave occasion to discuss topics like version
control, optimization and advanced debugging.

Most students managed to work through steps 1-6 in one day (= 7 hours of
scheduled and supervised studio time). On a few occasions, students gave up trying
to complete the daily assignment. This was mainly due to issues arising in step 4 as
a result of their lack of experience.

20h Generative Art Conference GA2017

True to constructionist learning theory, students were asked to share their
experiences with fellow students, currently trying to solve the same specimen. This
had them verbalize and explain how they had arrived at a solution, further anchoring
their understanding of what they did.

6. Concluding remarks

In this paper, a pedagogic method for teaching graphic designers programming in a
visual context has been outlined and put into practice. Supported by an overall
positive student response expressed in follow-up plenary interviews, the method
appears as a promising way of introducing graphic design students to programming
in a visual context.

The idea of contextualizing programming using pre-existing graphic design
specimens was well received. Students entered their programming course with
skepticism and anxiety, but introducing the deconstruction/ reconstruction method
and explaining how it relied on familiar and well-known material defused the student’s
immediate aversion to code. The students also appreciated being given a real-life
case as a starting point and step-by-step method to guide their learning process.

Though praised by the students, it can be argued, that repetitiously remaking work
done by other graphic designers does not stimulate them to synthesize their
knowledge into new independent creations. While this might be true, the decon-
struction/reconstruction method is primarily designed to keep students engaged and
motivated while introducing them to the nuts and bolts of programming. If students,
by the rote learning and repetitive practice implicitly inscribed in the method, manage
to cognitively link visual patterns with basic programmatic techniques, they have
established a solid basis for taking full advantage of the creative potential of
computational media in their future line of work.

To further put the social and learning-through-sharing ideas of constructive learning
theory in play, one possible future improvement would be to make the deconstruction
phase group-based to incite discussion and make problem-solving a more verbal
exercise. Moving to the reconstruction phase, shifting to individual work will still allow
for a personal hands-on experience with programming. Having multiple students
working individually in parallel to implement a jointly deconstructed specimen will
further increase the chances of students helping and learning from each other.

7. References

1. Tober, B. (2012): Making the Case for Code: Integrating Code-Based
Technologies into Undergraduate Design Curricula. Abstracts & Proceedings
from the Eigth Annual UCDA Design Education Summit.

2. Pettiway, K. (2012): The New Media Programme: Computational thinking in
Graphic Design Practice and Pedagogy. Journal of the New Media Caucus, CAA
Conference Edition 2012.

20h Generative Art Conference GA2017

3. Freyermuth, S. S. (2016): Coding As Craft: Evolving Standards in Graphic Design
Teaching and Practice. Plot(s), Volume 3, 2016, pp. 57-71. Parsons School of
Design, New York, USA.

4. Reas, C. & Fry, B. (2014): Processing: A Programming Handbook for Visual
Designers, Second Edition. MIT Press, Cambridge, Massachusetts, USA.

5. Shiffman, D. (2015): Learning Processing, Second Edition: A Beginner's Guide to
Programming Images, Animation, and Interaction. Morgan Kaufmann, Burlington,
Massachusetts, USA.

6. Reas, C. & Fry, B. (2015): Make: Getting Started with Processing, Second
Edition. Maker Media, San Francisco, California, USA.

7. Anderson, L. W., & Krathwohl, D. R. (2001): A taxonomy for learning, teaching,
and assessing: A revision of Bloom's taxonomy of educational objectives. New
York: Longman.

8. Papert, S. (1980): Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

9. Resnick, M. et. al. (2005): "Design Principles for Tools to Support Creative
Thinking" in "Creativity Support Tools - A workshop sponsored by the National
Science Foundation June 13-14, 2005, Washington, DC."

10. Guzdial, M. (2007): Contextual computing education increasing retention by
making computing relevant. White paper, Georgia Institute of Technology.

11. Guzdial, M. (2010): Does contextualized computing education help? ACM
Inroads, 1(4), 4-6.

12. Amiri, F. (2011): Programming as design: The role of programming in interactive
media curriculum in art and design. International Journal of Art and Design
Education, 30(2), 200-210.

13. Wing, J. (2006): Computational thinking. Communications of the ACM, 49(3), 33-
35.

14. Wing, J. (2014): Computational Thinking Benefits Society. 40th Anniversary Blog
of Social Issues in Computing. (Retrieved November 4, 2017, from
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html)

15. Stahl, G. (1993): Interpretation In Design: The Problem of Tacit and Explicit
Understanding in Computer Support of Cooperative Design. PhD dissertation in
Computer Science, University of Colorado, August 1993.

16. Mari, E. Arte Programmata, Kinetische Kunst. (1963) Printed by Officina d'Arte
Grafica A. Lucini e C, Milan (Retrieved November 3, 2017, from
https://www.moma.org/collection/works/8052?locale=en)

17. Processing. (Retrieved November 3, 2017, from: http://www.processing.org/)
18. Pinterest. Computational Graphic Design Inspiration. (Retrieved November 3,

2017, from: https://www.pinterest.dk/stixan/computational-graphic-design-
inspiration/)

19. Lee, J (2014). systems 14. (Retrieved November 7, 2017, from
http://www.leejaemin.net/systems-14)

