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Abstract 
 
This paper documents an interactive musical generative system built from minimal explicit 
design specifications. Given the fact that conventional, responsive rule-based systems 
cannot cope with large swings in context, a method of on-line development is suggested. The 
machine develops a dynamic motivation as to whether integrate with a musical context 
suggested by a human interactor, or in contrast, express a native musical character. 
Motivations are configured as networks of relationships that provide continuous interpretation 
of changes in human behaviour. A combination of a simple form of reinforcement learning 
and genetic evolution continuously optimise motivations in order to accommodate input from 
an unpredictable human performer. Experimental evidence shows that man and machine 
may indeed develop common objectives such as mutual agreement during interaction. 

  
1. Introduction 
 
Generative works of art are often thought of as conceptual machines that – once they are activated - 
realise themselves. Given enough critical mass, such works correspond to micro-universes obeying 
some invented physics of arbitrary complexity. Conventional rule-based systems have been used 
successfully to implement style specific programs; they rely on the complexity entailed from the 
combinatorial explosion of the implied rule-base [8, 4]. In contrast, much artificial life oriented work 
follows the premise that both interesting morphology and behaviour may follows from the local 
interaction of simple rules [12]. Both approaches prove to be effective instruments for managing 
visual complexity. However, they are both characterised by a one-way specification of expertise; the 
artist implements rules while observing their implicit results. Most significant, the artist often specifies 
further rules from the observation of the current behaviour of the program; therefore programming 
generative systems is a form of artistic introspection. In reality, one-way specification takes place in a 
creative procedure of circular thinking. The main point here is that the art production system (whether 
visual, musical or hybrid) is thought of a as a closed container – complexity of form and behaviour is 
conditioned by some local rule-base in isolation – the system is not grounded into the real world and, 
in this respect, it is not interactive.  
 
In contrast, this paper addresses the issue of open systems, systems that feature a physical 
connection with the external universe in which we live. Such systems offer internal generative 
potential while remaining open to influence from outside. In addition, open systems may develop 
autonomous behaviour rather than reflect the automatic behaviour from the activation of a rule-base 
in isolation. Autonomous systems are intrinsically interactive; they develop their own rules as a side 
effect of interaction itself. The resulting spatiotemporal patterns observed in biological workspaces 
speak to the imagination [1], therefore we attempt to identify the essential features of living systems 
as they may guide us to the synthesis of artificial ones.  
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Figure 1: Global systems outline comprising functionality for listening, performance and on-
line synthesis of machine motivations 
 
In short, a living system contains some form of self-representation stretched out in its DNA, a living 
system exchanges information and energy with a dynamic environment, they rely on the integrity and 
relationships between their constituent components, they evolve over many generations while 
learning in-between points of evolutionary breeding. Finally, living systems develop motivations on-
line, what to do next does not follow programmed instructions but emerges spontaneously from a set 
of competing drives. 
 
We suggest these features to serve as first principles towards the development of an interactive 
musical entity, a system that will express its own native character while remaining open to pressure 
from a single human improviser. Behaviour in such a system follows from the competition between 
two conflicting forces: either expression (create output irrespective of current context) or integration 
(create output that is complementary to the prevailing context and keen to contribute to its further 
existence). We developed a real-time architecture (figure 1) to support rewarding man-machine 
interaction, it consists of three main networks; an evolved sensor-activator network for the purpose of 
machine listening [2] a distributed player agency equipped with evolved musical processing functions 
[3] and finally, networks serving the representation and management of internal machine motivations. 
The latter is the core subject of the present paper. 
 
We take inspiration from the biologically rooted behaviourist theory of motivation [11] as it avoids all 
explanation of actions in terms of internal events such as desires and emotions. In contrast, 
behaviourist thinking explains complex behaviour in terms of external impact from the environment. 
One may consider the theory of autopoiesis [9] as a generalisation of this idea; the theory of structural 
coupling suggested here explains interaction not so much in terms of the complexity or content of a 
signal but in terms of the kind of structural changes it causes in the receiver. In this light, the model 
presented here is based on the articulation of activation and inhibition forces in a networked 
architecture; perpetual renewal of its structure is achievable while, however, its structural integrity 
(ontogenesis) is guaranteed. 
 
2. Rationale of motivation-based interaction 
 
Provided that our system aspires autonomous behaviour, we cannot accept its identity to be designed 
exclusively by external, human design specifications. We hope for a musical personality that 
maximises diversity, a system spawning many musical traits of great variety. System behaviour 
should be totally unpredictable while still displaying a coherent personality. Articulate musical patterns 
should develop from initial randomness. In other words, interaction is seen as navigation in a vastly 
multidimensional space featuring patterns of great diversity; from relative periodicity to unrestricted 
chaos. Such dynamic patterns reflect the variable degrees of man-machine understanding within the 
process of interaction.  
A dynamic mechanism is needed that can make up criteria to interpret external agitation in terms of 
positive (agreement) or negative (conflict) impact. It must be robust and create an opinion by itself 
according to demands generated by its own internal dynamics. The drive object aims to provide such 
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a structure. 
 
A drive is a computational object that specifies a simple psychological orientation. It can be 
considered an abstract suggestive machine speculation. It has two options: either integration or 
expression. Integration means that the machine aims to produce music that assimilates well with the 
last sequence played by the human player. In contrast, expression implies that the drive prefers to 
move away from the musical style suggested by the human improviser. The options are not mutually 
exclusive, they are viewed as two competing alternatives represented by two fluctuating quantities on 
a scale of 0 to 100. 
 
The drive object implements a first principle: the appreciation and accommodation of change. 
Activation of the system happens in terms of changes, that is, signed intervals reflecting changes of 
features of given melodic material1. A first order quantity in our system is the current melodic distance 
between the last sequences produced by man and machine. We simply track if musical similarity (i.e. 
the inverse of musical distance) between the output of man and machine actually increases, 
decreases or remains the same over time.  
 
At the very moment the machine just finished playing (detected by an adaptive segmentation 
algorithm) its most recent response, the effect on the situation can be computed. If the new distance 
is higher than the previous distance, we interpret this action as a wish to increase musical contrast 
between man and machine.  If the new distance is lower, we know that both parties are musically 
getting closer together. Intuitively, we may track consecutive differences (delta-similarities) in time. If 
many such consecutive delta-similarities have the same sign, we infer that man and machine are 
either engaged in an escalating process of incremental contrast (negative sign) or apparent mutual 
understanding (positive sign). 
 

 
Figure 2: Circular model featuring reinforcement of motivation levels driven by changes in 
the environment. 
 
Now, the idea is to learn which behavioural motivation (integration or expression) should dominate 
given a specific perception of behavioural changes in the human performer. From this knowledge, an 
appropriate musical processing function can be selected to fulfil that specific orientation. 
 
The notion of a relationship was developed to specify a qualitative link between observed external 
changes and internal quantities representing the strength of an internal motivation. Internal 
motivations and external pressures are thus operationally connected as a complex dynamical system. 
 
3. Relationships 
                     
1 In practice, a feature vector is computed documenting changes of a large number of higher 
level features in a four dimensional representation of a string of musical events (pitch, 
loudness, duration and entry-delay), these include: changes in diversity, regularity, tempo, 
harmonic tension and entropy. 
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The idea of a relationship is inspired on the two-axis theory of personality suggested by Eysenck [5] 
and the relationships inside model ecosystems developed by Steels [13]. Eysenck’s model suggests 
a four-quadrant system with the horizontal axis denoting a degree of stability (stable to unstable) and 
the vertical axis denoting introverted vs. extraverted behaviour. The way the human performer 
behaves is imagined as being reflected in the two-axis model. Behavioural changes are suggested by 
specific trajectories in two-dimensional space. Steels’ model involves the acquisition of couplings 
between processes in the environment and internal processes. It studies couplings in order to evolve 
favourable relationships between a mobile robot, its resources and an unpredictable environment. 
Four complementary types of couplings are suggested which we view as functionally equivalent to the 
four quadrants described by Eysenck.  

relation 1 relation 2

relation 3 relation 4
 

Figure 3: Four types of basic relations between changes in an input quantity (green arrows) 
and the effect in an output quantity (red arrows).  
 
A basic set of four relations exist, we consider them in their most basic form, as linking two quantities 
by way of a multiplication factor ƒ. A more qualitative interpretation follows in the next paragraph. For 
now we consider the 4 different couplings between changes in a source quantity ∆Q-source(t) at time 
t, and the value of a destination quantity Q-dest(i+1) at time (t+1). 
 
The 4 relations are defined as follows: 
 
If ∆Q-source(t) > 0 then Q-dest(t+1) = Q-dest(t) + ∆Q-source(t)*ƒ1 
If ∆Q-source(t) > 0 then Q-dest(t+1) = Q-dest(t) - ∆Q-source(t)*ƒ2 
If ∆Q-source(t) < 0 then Q-dest(t+1) = Q-dest(t) + ABS(∆Q-source(t))*ƒ3 
If ∆Q-source(t) < 0 then Q-dest(t+1) = Q-dest(t) – ABS(∆Q-source(t))*ƒ4 
 
The four types of relations are visualised in figure 3. Note that every relation { r1 … r4 } features a 
private multiplicative weighting factor { ƒ1 … ƒ4 }. Relation type 1 implies that a positive change in a 
source quantity will introduce a positive change in a destination quantity, the amount of change being 
proportional to the change at the source modulated by the private weighing factor of relation 1. In 
relation type 2, positive input changes produce negative output changes: output is inverse 
proportional to input. Relation type 3 connects negative input changes to positive output changes. 
Finally, relation type 4 implies that negative input changes produce negative output changes, again 
scaled by the weighting factor of the given relation. It was decided to keep the weighting factors local 
to every relation, rather than have individual weights in every relationship in order to limit the state 
space and create a better chance to monitor the impact of the individual relations. 
 
4. Implementation of motivations 
 
A motivation is implemented as a drive object that is sensitive to three kinds of changes: (1) the first 
derivatives of the similarity between the most recent melody produced by man and machine and (2) 
the first derivatives of the quality and (3) quantity of the contents of the most recent man produced 
melody. All input changes are computed and normalized in a range -100 to +100.  
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²Quality ²Similarity

expression

²Quantity ²Quality ²Similarity

single drive

integration

²Quantity

1 1 0 0 1 0 1 0 0 0 0 11 0 1 1 0 0 1 0 1 1 1 0

relation type 0 (+ +): on

relation type 1 (+ -): off

relation type 2 (- +): on

relation type 3 (- -): on

 
Figure 4: Topology of a single drive object showing three groups of four bits per motivation 
 
Relationships are specified as two 12-bit vectors. Since there are three types of input sensors each 
feeding four types of relationships, we must accommodate 12 potential effects of external change – 3 
blocks of 4 bits. For instance, bits 0~3 account for delta-similarities, bits 4~7 account for delta-quality 
and bits 8~11 account for delta-quantity. We must include both primitive motivations: integration and 
expression resulting in a total of 24 bits. If a bit equals 1, it means that its relationship is active, if the 
bit equals zero, its relationship is not accounted for. Note that many relationships can be active (bit 
on) in a single block. The output will reflect the contributions of all active relationships. When 
simultaneous relationships contribute opposite pressure, they may partially neutralise their mutual 
effect. This phenomenon contributes to non-linearity in the network. 
 
drive-ID            : 0 
nr-runs             : 7 
current-orientation : EXPRESSION 
relationships Exp   : 1  0  1  0  1  1  0  1  0  0  1  0 
relationships Int   : 1  0  1  1  1  0  0  0  1  0  0  0 
expression-level    : 80.86634 
integration-level   : 31.14185 
efficiency-value    :  2.24824 
understanding-level : 45.21349 
  
Figure 5: Prototype snapshot, list of principal instance-variables inside a drive. 
 
Intuitively, we understand that the density of ‘on’ bits in the vector will condition the global 
responsiveness of the drive. Too many ‘on’ bits may potentially produce over-stimulation leading to 
erratic output. In contrast, too few ‘on’ bits lead to under-stimulation, in this case, significant changes 
in input may get lost. We turn to a learning algorithm that learns to create appropriate couplings 
between input changes and internal motivations. 
 
The behavioural motivation of a drive – its current orientation – depends on the strength of the two 
competing levels (0~100) for integration and expression. We expect a minimum contrast between 
both values; we introduce a threshold of 10%. If the difference between the levels for integration and 
expression is higher than 10%, then the higher value decides on the orientation else the current 
orientation remains ambiguous. 
 
Notice the current orientation in figure 4 is expression. This has a double impact on further 
computations. First, the expression-vector becomes the source of temporary relationships and 
second, the output value affected by these relationships is the expression-level. The purpose of the 
understanding-level instance variable is addressed in section 5.2. Now, as an example, consider the 
first block of 4 bits of the Integration relationships: (1 0 1 1). Since the first bit is ‘on’, relationship type 
1 (+ +) takes effect. Thus when the input level increases the output level follows. Relationships type 2 
(+ -) is not considered since the second bit equals zero. The third bit is ‘on’ meaning that the 
contribution of a relationship type 3 (- +) is added to the previous. In other words, when delta-similarity 
is either positive or negative, the output level will increase. In addition, the relationship type 4 (- -) 
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says that if input level decreases the output level will follow in the same direction.  
 
5. Learning in the drive object 
 
5.1 Learning to be efficient 
 
It is important to know how efficient a given drive actually is. When the external changes are 
processed by the relationships, they receive a qualitative interpretation because of non-linear 
couplings take place between the dynamics of external higher level quantities (similarity, quality and 
quantity) and competing internal behavioural motivations (integration and expression). Given the 
current orientation, we analyse if man and machine are coming together or drifting apart – according 
to their melodic similarity. For example, in pseudo-code;  
  
if ( current-orientation == integration ) 
 if (currDist – prevDist) > 0 ) 
 then ( efficiency = (efficiency * inhibition-weight)) 
 else 
 if (currDist – prevDist) < 0 ) 
 then ( efficiency = (min 100 (max 1 (efficiency * activation-weight)))) 
   
1.11 < activation-weight < 1.50  
0.50 < inhibition-weight < 0.99  
 
The learning method suggested here is similar to reinforcement leaning (RL) [14]. RL is a form of 
unsupervised learning; the learning agent receives feedback about how appropriate its actions are in 
order to achieve a given goal. However, the goal itself is not communicated, the agent aims to 
approach optima essentially by trial-and-error and learns from positive (rewards) or negative 
(punishment) feedback – corresponding to the fluctuations in drive efficiency according conditional 
scaling by activation and inhibition weights. As the efficiency of a given drive increases, so will its 
probability to be selected in succeeding trials. Eventually, the drives-pool will progress towards values 
that will maximise reinforcement. RL is typically applied in real-world problems characterised by a 
huge state space. All of this seems to fit the essence of interactive composing: man and machine 
must learn to behave successfully without any a priori information about their mutual personalities.  

 
 

Figure 6: Simplified representation of two-stage learning algorithm: evaluation of the drive’s 
relationships and consequently adjusting the drive’s efficiency level. 
 
A two-stage learning algorithm is depicted in figure 6. Stage one updates the levels of integration and 
expression from the evaluation of the current relationships. Stage two updates the efficiency 
according to the current orientation. Let us tackle stage one in detail. For every delta value, the 
respective slot of the relationships-vector is evaluated.  
 
Stage one encloses two nested loops; the arguments are the current gradients (delta-values) in man-
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machine melodic similarity and the changes in quality and quantity of the contents of working 
memory.  All 24 bits of the relationships-vector are addressed (figure 4). The levels are scaled up 
(activation) or down (inhibition) according to the type of relationship and the delta value. In the end, 
the integration and expression levels will reflect the accumulated impact of the combination of vector 
on-bits and the sign of the respective delta-values.   
 
Stage two evaluates the resulting (potentially changed) drive-orientation, decided on by taking the 
highest value of the two competing levels as the winning current orientation. Take note that we exploit 
only the delta-similarity at stage two. This delta value and its sign provide information as to whether 
the current relationships were helpful to steer the drive towards the optimal orientation. The intended 
optimal orientation (integration or expression) is the one that is consistent with the last change in 
man-machine similarity. For example, when the man-machine melodic distance decreases and the 
orientation is integration, we conclude that the drive is indeed resourceful towards the fulfilment of this 
drive’s orientation – therefore, its efficiency-level is scaled up using the activation-factor. In similar 
vein, in case the melodic distance increases and the orientation is expression, the efficiency level is 
also scaled up. Efficiency-level is inhibited when the changes in distance are in conflict with the 
orientation i.e. either a combination of integration and increasing distance or expression with 
decreasing distance. 
 
Any given orientation is considered a machine suggestion to temporarily approach musical interaction 
from a given perspective i.e. either a wish for man and machine drifting apart (expression) or 
narrowing the man-machine melodic distance (integration). The rationale is that a suggestion is first 
generated at random and subsequently adjusted according to the evaluation of the data gathered 
during actual interaction – the argument for having a learning component in the first place. 
  
Finally, the obvious question arises of how to compute the similarity of two melodies (the last segment 
input by the human performer and the current machine response), possibly of unequal length. 
Different methods were implemented and evaluated, including; the use of 4 transition matrixes 
tracking the quantised values of consecutive intervals in a sequence of MIDI events in the dimensions 
of pitch, velocity, duration and inter-onset-time – similarity is viewed as being proportional to the 
degree of overlap between the respective matrixes. The current implementation calculates similarity 
indirectly; by comparing the feature-vectors2 of two given melodies. Further discussion is, however, 
beyond the scope of the present paper. 
 
5.2 Learning to optimise man-machine agreement 
 
A second higher-level form of learning is introduced. Remember, the implicit goal of our system is to 
maximise man-machine agreement i.e. having man and machine demonstrating the same global 
orientation. To this purpose, one additional quantity is introduced, the understanding-level, acting as 
an instance variable in the drive object (figure 5). This variable is updated proportional to the degree 
of conflict or agreement between the current global orientations of man and machine. 
 
The listening module continuously adjusts two quantities: integration-pressure and expression-
pressure, scalars between 0~100. The update is proportional to the current delta-similarity – the 
amount and direction of change in similarity between the most recent and the previous musical 
sequence played by the human performer in relation to a given machine output. For instance, when 
the musical distance decreases (similarity increases), we infer that the human performer wishes to 
integrate, so integration-pressure is scaled up and expression-pressure is slightly scaled down. The 
activation factor is proportional to the absolute value of the similarity interval, formally: 
  
activation-weight = 1 + abs(delta-similarity) / 5 
inhibition-weight = 0.98 
                     
2 We analyse the respective lists for global direction (incremental, decremental or stationary), 
angularity (smooth or angular), regularity and diversity (low or high), and the relationship 
between the first and last value (interval is positive, negative or zero). This yields two 48 
element binary feature-vectors; melodic similarly is considered proportional to the amount of 
coinciding values in both vectors.   
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if ( delta-similarity > 0 ) 
 integration-pressure =  
  (min 100, integration-pressure * activation-weight) 
 expression-pressure = 
  expression-pressure * inhibition-weight 
 
 else 
 if ( delta-similarity < 0 ) 
  expression-pressure =  
   (min 100, expression-pressure * activation-weight) 
  integration-pressure = 
   integration-pressure * inhibition-weight 
 then 
then 
 
The level of human-global-orientation is obtained as follows: 
 
sum = integration-level + expression-level 
 
if (integration-level > expression-level) 
 orientation = ( integration-level / sum ) * 100 
 else 
 orientation = ( -1 * (expression-level / sum )) * 100 
then 
 
The resulting global orientation yields a signed value between -100 and +100, negative values 
denoting expression, positive integration. The complementary level of machine-global-orientation is 
computed using a similar algorithm; the contrast between levels of integration and expression in the 
current drive returns a likewise signed numeric result between -100 and +100. 
 
It is now straightforward to compare the formatted orientations of man and machine in order to infer 
an estimate of common-understanding i.e. the nature and strength of mutual orientation between 
both. In pseudo code: 
  
if (machine-global-orientation.signum == human-global-orientation.signum 
 common-understanding = Agreement  
 common-understanding-level =  
  (human-global-orientation.abs + machine-global-orientation.abs) / 2 
 else 
 common-understanding = Conflict 
 common-understanding-level =  
  (human-global-orientation.abs - machine-global-orientation.abs) / 2 
 
The procedure above returns a signed value reflecting the strength and type of man-machine 
orientation, agreement occurs when both pursue the same orientation i.e. either integration or 
expression. The interaction is characterized as in conflict when both interactors produce levels of 
divergent sign. Then, the understanding-level of the current drive is further adjusted as follows: 
 
if common-understanding-level > 0 
 ;; activation 
 factor = remap(common-understanding-level 0  100 1.0 3.0 ) 
 else 
 ;; inhibition 
 factor = remap(common-understanding-level 0 -100 1.0 0.3 ) 
 
understanding-level = min( 100, understanding-level * factor ) 
 
The reinforcement factor is proportional to the common-understanding-level and its sign; levels of 0 ~ 
100 and -100 ~ 0 are remapped to respectively 1.0 ~ 3.0 and 0.3 ~ 1.0). The understanding-level is a 
second indication of how appropriate a given drive performs given a specific interaction context – it 
may thus guide the selection of specific drives in forthcoming interactions. 
 
Finally, we might wish to get an impression of the global behaviour of the complex dynamical system 
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comprising a single man and a single machine; the dynamics of the interaction as articulated by the 
fluctuating orientations of both parties. The system-global-orientation (-100 to 100) is computed as: 
 
system-global-orientation = (human-global-orientation + drive-global-orientation)/2 
 
This average continuously documents global systems behaviour at the highest level of abstraction; in 
essence, it provides an indication of the social processes emerging from the interaction process itself.  
 
6. Managing simultaneous, competing motivations 
 
A critical mass is needed and a procedure to maximise diversity and guarantee the potential 
development of many different types of interactions. We turn to a genetic algorithm [6] to breed fresh 
populations of drives by considering the fittest drives (the most efficient drives) as parents to breed 
the next set of offsprings (section 7). However, let us first examine how acquired competence may 
actually be put to good use within the process of interaction. 
 
In the current implementation, the drives-pool contains between 8 and 30 drives. The initial 
relationships are random with a density of 50 percent, while both orientation levels receive a random 
value between 40~60. The rationale is to provide initial momentum for change in either positive or 
negative directions. A random selection scheme is used, the chance for a drive to be selected being 
inverse proportional to the number of times it ran in the past. Thus, all drives get a chance to perform 
but not in any specific order. 
 
At the beginning of the learning period, any drive can be selected because none has developed an 
efficient behavioural orientation. Exploration takes place: the pool of drives is sampled at random and 
the orientation levels are pushed up or down. When a clear contrast gradually emerges, we may 
decide to actually exploit the knowledge that was acquired online. So first we give many options a 
chance to develop while later on, the promising ones are applied. We use a probabilistic ranking 
scheme that proportionally conditions efficient drives to be selected. Once the learning period is 
finished, the genetic operators are applied. The drive’s efficiency-level is viewed as equivalent to 
fitness. A newly bred generation will thus reflect the knowledge gathered during the learning period.  
This situation described above is known as the dilemma of opting for exploration or exploitation. A 
global parameter is introduced: the exploration-exploitation-ratio (probabilistic selector, 0 = only 
exploration, 100 = only exploitation, 50 = equal chances) – the hypothesis is that its value should be 
congruent with changes in responsiveness of the human performer. 
 

 
Figure 7: The exploration-exploitation-ratio acts as a probabilistic threshold for 
selecting the next drive. 
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The level of human-responsiveness is another systems variable computed from the normalised sum 
of 3 items: quality and quantity of the current contents of working-memory (a FIFO structure holding 
the last 32 MIDI events input by the human performer) and the current-no-input-gap (the time since 
the last event was input). We keep track of the previous and current levels of human-responsiveness. 
Now, it is imagined that increased responsiveness signifies a readiness to connect with the current 
context from the part of the human performer; consequently opportunistic exploitation of what 
happens to be available should be favoured over the uncertainty associated with adventurous 
exploration. 
Otherwise, when the interval of current minus previous human-responsiveness is negative, we reason 
that the human performer is temporarily loosing attention; therefore, we should increment chances for 
exploration to potentially induce renewed interest in the human performer. In short, the exploration-
exploitation-ratio continuously tracks changes in human-responsiveness as to yield a probabilistic 
threshold between 0 and 100.  
 
Yet one additional concern will guide the selection of a particular drive: its understanding-level. The 
understanding-level of a prospective drive is addressed as this level reflects the short-term efficiency 
in terms of social conformity during interaction as explained in the previous section.  Figure 7 
illustrates the twofold application of the exploration-exploitation-ratio in picking the most 
advantageous drive. The higher the ratio, the more chance for exploitation and the more chance for 
selection of understanding drives. Lower ratios shift towards selection of drives based on efficiency 
while very low ratios promote exploration i.e. random selection. Before selection, sorting according to 
respectively positive understanding-level or positive efficiency collects fit drives. The stringency 
parameter (0~100) further constraints the selection process. Given a stringency value of zero, any fit 
drive is subject to selection irrespective of its fitness level. Given a stringency value of 100, only the 
fittest drive is a candidate. Values in between exercise variable pressure on the selection process.  
 
7. Genetic optimisation of motivations 
 
Nowadays, genetic methods are a hot item in computer music research [10]. For our purpose, in 
terms of evolution, the fitness of a drive is equivalent to its efficiency.  Genetic optimisation aims to 
modify the relationships inside the drives to make them better adapted to the variable external 
pressures i.e. the changes in human-machine similarity and the changes in quality and quantity of the 
material provided by the human performer.  
 
Breeding the next population is organised as follows: 
 
- The current drives population is sorted according to fitness. 
- The two fittest drives are considered parents. 
- A new population is created: the relationship-vectors of both parents are considered genotype 

and new vectors are computed using a single point crossover operator. 
- A small amount of mutation is applied to all drives in the new population, mutation level is lower 

than 5% in most experiments. 
- All instance variables of every new drive are reset and the integration- and expression levels are 

set to a random centre value between 40 and 60.  
  
In the current implementation, the moments of genetic activity are timed explicitly. Genetic operators 
should take action when all drives had a chance to build up enough experience during interaction, all 
drives must be applied at least a few times and gather expertise from the learning process as 
described above. The breeding-cycle, therefore, is taken as a multiple of the number of drives in the 
drives-pool. Given a population of 16 drives in the drives-pool, a typical breeding-cycle is 16 * 5 or 80 
process cycles. This implies that, on the average, every drive has a chance to be applied 5 times.  
 
8. Experimental results 
 
We conducted a substantial number of experiments to investigate the potential of motivation-driven 
interaction. Each experiment monitors a considerable number of systems parameters (exactly 50) and 
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saves their momentary values to disk. This yields a large data file documenting an interactive session; 
the data is further subject to various types of off-line analysis and visualisation.  However, only a few 
aspects directly relating to motivations and global behaviour are included here. Two experiments offer 
a chance to compare behavioural development in two independent experiments: e24 and e25. The 
population size is 8 drives, the breeding-cycle is only 16 and the total number of process-cycles is 
320 – therefore, these experiment contain exactly 20 epochs of genetic evolution. The experiments 
respectively take 38’24” and 44’23”. 
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Figures 9 and 10 document drives global-orientation i.e. the overall result of the competing forces of 

Figure 8: Evolution of the drives-
pool global orientation, 
integration (positive 
values), expression 
(negative values) in 
experiment e24. 

Figure 9: Evolution of the drives-
pool global orientation, 
integration (positive 
values), expression 
(negative values) in 
experiment e25. 

 

Figure 10: Evolution of the drives-
pool understanding-level in 
experiment e24. 

Figure 11: Evolution of the drives-
pool understanding-level in 
experiment e25. 

 

Figure12: Evolution of the level of 
system common 
understanding in 
experiment e24. 
Agreement (positive 
values), conflict (negative 
values).

Figure 13: Evolution of the level of 
system common 
understanding in 
experiment e25. Agreement 
(positive values), conflict 
(negative values). 
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integration and expression. Both show an incremental data profile, the machine develops momentum 
to favour integration. 
Figures 10 and 11 show the evolution of the drives-pool understanding-level. The polynomial reveals 
wave-like behaviour; the understanding-level is subject to slow oscillation. 
Figures 12 and 13 document system behaviour at the highest level of generalization. System 
common understanding shows areas of relative stability and areas of oscillations constrained 
between specific upper and lower levels. Both experiments maintain a significant interaction climate 
characterized by man-machine agreement. A strong correlation exists between the incremental 
nature of the drives-pool understanding level (figures 10 and 11) and a similar profile in system 
common understanding level. 

All experiments keep track of two additional systems variables: human-agreement and machine-
agreement (figures 14 and 15). Human-agreement is updated each time the segmentation algorithm 
considers the human performer ‘just finished playing’. Machine-agreement is updated every time the 
machine just finished playing its most recent response. The rationale is to have quantities that 
respond immediately (in contrast to accumulated changes inferred at the end of a learning period) to 
changes in the musical distance between man and machine. The levels of agreement are scaled up 
or down according to the interval in similarity. For instance, human-agreement goes up when the 
most recent human input sequence manages to be more similar to the current machine output than 
the previous human input sequence. In contrast, given an increase musical distance, human 
agreement it is scaled down. Exactly the same principle articulates machine-agreement. 
 
Remarkably, figure 14 and figure 15 (somewhat less so) demonstrate a steady increase in agreement 
for both man and machine. When both values are highly similar and of a high value there is evidence 
that both parties managed to develop musical functionality to perform in a common effort with shared 
objectives. In other words, man and machine expose adaptive behaviour. As a result, these 
observations reveal emergent goal directedness as a side effect of leaning in the drives. 
 
9. Conclusion 
 
In conclusion, a drive implements machine motivations – a facility to generate temporal machine 
suggestions. The drive object advocates a method to avoid explicit design that typically characterizes 
conventional mapping procedures in interactive systems design.  In contrast, a drive is a flexible data 
structure that adapts its integration and expression levels according to its relationships and the 
accommodation of external changes during the process of interaction itself. In addition, a drive 
features learning components: long-term efficiency and short-term understanding. 
The fluctuations in system common understanding -- representing the top-most impression of the 
global systems behaviour – reveal the dynamic qualities of the interactive process. The systems’ 
implicit intention is to develop networks and musical processing functions that are optimised towards 
generating agreement between man and machine as musical partners. Agreement implies that both 
man and machine show competence to develop functionality that contributes to sustaining the current 

Figure 14: Evolution of the levels 
of human vs. machine 
agreement in experiment 
e24. 
 

Figure 15: Evolution of the levels 
of human vs. machine 
agreement in experiment 
e25. 
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system-global-orientation, irrespective of whether it is integration or expression. The experiments 
reported here show strong evidence that the current systems architecture manages to support such 
functionality successfully.   
A short note on implementation: a first version was written in Macintosh Common Lisp using MIDI 
functionality provided by Common Music [15]. The most recent version is written in SuperCollider 3.2 
[7]. Both versions feature a style of object-oriented programming and message passing, perfectly in 
harmony with the idea of musical interaction by way of networked relationships. 
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