
Interactive Swarm Orchestra

Daniel Bisig
Institute for Computer Music and Sound Technology

Zurich University of the Arts, Switzerland
e-mail: dbisig@ifi.unizh.ch

Martin Neukom
Institute for Computer Music and Sound Technology

Zurich University of the Arts, Switzerland
e-mail: martin.neukom@zhdk.ch

John Flury
Institute for Computer Music and Sound Technology

Zurich University of the Arts, Switzerland
e-mail: flury@syntharp.com

Abstract

The project Interactive Swarm Orchestra (ISO) employs flocking algorithms to control
computer sound synthesis and 3D sound positioning. Synthesis, positioning and
movement of several simultaneous sound events are modeled according to swarm
behavior. Camera-based tracking allows visitors to interact with this acoustic flock
and thereby change its spatial distribution and synthesis properties. This paper fo-
cuses on the description of the software components that have been developed spe-
cifically for this project. These components encompass of a sound synthesis frame-
work, functionality for 3D sound projection based on Ambisonics, a generic multi-
agent simulation environment, and video tracking software for conventional video
cameras and for SwissRanger 3D cameras. All software source code is publicly
available.

1. Introduction

The field of computer music and its performance provides a vast territory for artistic experi-
mentation. The qualities of synthetic sounds are not predefined by the physical properties of
musical instruments nor is the creation of these sounds compulsorily associated with the ma-
nipulation of traditional interfaces. Furthermore, computer music is unbiased towards particu-
lar performance styles and freely shifts in a continuum between improvisational and composi-
tional as well as presentational and participatory styles. Accordingly, computer music practi-
tioners see themselves confronted with an almost unlimited number of choices for specifying
and controlling the sound generation process and for defining the relations between composer,
performer, machine and audience. For this reason, current research in computer music has

shifted somewhat away from the development of sound synthesis techniques and becomes
increasingly engaged with issues that traditionally belong to the field of human machine inter-
action (HMI). This comprises novel interface designs, improvements in perception and feed-
back (e.g. 3D sound projection or multi-modal feedback), the creation of intuitive interaction
modalities (e.g. camera-based full body tracking), and novel control algorithms for sound
generation that simplify real-time performance.

We believe that the application of concepts and techniques from Artificial Life (ALife) re-
search can greatly contribute to this research topics. ALife explores artificial complex systems
that exhibit life-like properties such as adaptivity, autonomy, diversity, self-organization and
emergence. Complex and self-organized systems have great appeal for art, since they can con-
tinuously change, adapt and evolve [1]. By adding means for interaction to algorithms and
simulations from ALife, these systems may become flexible and powerful tools that contribute
to all of the previously mentioned research topics and thereby possess the potential to estab-
lish a unified foundation for interactive algorithmic forms of computer music.

Swarm simulations form an important part of ALife research and explore principles of self-
organization and emergence in the appearance of group behavior [2, 3]. Such simulations are
particularly interesting since they can express a large variety of different types of behaviors
that range from very simple and reactive organizations up to highly complex systems that can
learn and evolve. Furthermore, swarm simulations can easily be adapted to deal with any
number and dimension of parameters (e.g. sound synthesis parameters). In addition, swarm
simulations lend themselves very well to intuitive and natural forms of interaction. There exist
several projects by researchers and artists that apply swarm simulations for the generation of
music. For example, Tim Blackwell has applied swarms that act as artificial musicians during
a life improvisation with human musicians [4]. This system employs a combination of swarm
and stigmergic behavior [5] and has also been employed to control granular sound synthesis
[6]. A collaboration of Tatsuo Unemi with one of the authors of this paper has resulted in the
realisation of several interactive systems that rely on swarm behavior to generate both visual
and acoustic feedback [7 - 10]. Finally Yuta Uozumi has realized a software for live composi-
tion based on a predator-prey simulation [11]. These projects illustrate the impressive creative
and aesthetic potential of swarm-based computer music. Unfortunately, these efforts represent
idiosyncratic combinations of very specific interaction forms, swarm behaviors and sound
generation types and make no attempt at providing generic tools to explore the vast space of
possibilities of swarm-based computer music. The ISO project [12] is an attempt to create
such a generic tool and supports a wide variety of research and performance in swarm -based
computer music.

2. Concept

The ISO project is a manifestation of our belief, that practical and conceptual ideas from Arti-
ficial Live (ALife) provide an excellent foundation towards the establishment of a coherent
approach to several important aspects of computer music (sound synthesis, composition and
interaction). Our approach employs a generic swarm simulation as intermediary between mu-
sician(s), sound generation and acoustic projection. It is the simulated agents’ behaviors that
affect the mapping of the performer’s activities into musical structure and its timbral, tempo-
ral and spatial development. We intend to shift the creative focus of a musician’s work to-
wards the design of properties, behaviors and interrelationships among agents and their musi-
cal dependencies. Depending on the agents’ capabilities, autonomy and reactivity, the result-
ing music may have unexpected and emergent properties or resembles a manually scored
composition. Since the agents’ characteristics can change over time, the music may progress
through improvisational and pre-planned phases and can alternate between presentational or
participatory performance styles. These principles can be applied to high- and low-level musi-
cal structures. For instance, the musician may choose to directly control the global develop-
ment of a piece but employs generative principles for sound synthesis. Or he might link the
music’s long and short term temporal changes to the same agent behaviors but acting on dif-
ferent time scales. Finally, the musician can apply the agent simulation to create musically
meaningful correlations among sound synthesis parameters. For example, these correlations
can be derived from neighborhood relationships among agents. Such correlations help to re-
duce the dimensionality of the musical search space and thereby simplify the musician’s ex-
plorative and improvised music creation during life performance.

Figure 2: Highly simplified schematics of a traditional (left) and simulation-based (right) com-
puter music performance. Normal arrows indicate control relationships. Prism shaped arrows
denote perceptional feedback.

3. Implementation

An important aspect of the ISO project concerns the development of software and hardware
tools that support the application of swarm simulations for the creation of computer music. To
account for the huge diversity of different types of computer music and swarm-based simula-
tions, our implementations try to be as generic and flexible as possible and minimize interde-
pendencies among individual components. Correspondingly, we don’t attempt to compete
with more specialized tools with regard to user friendliness, simplicity or computational per-
formance. With the exception of our camera-based tracking software, all software tools exist
as C++ libraries. Accordingly, our system takes a programming type of approach to the crea-
tion of computer music. We admit that this approach limits our musical target audience con-
siderably since the visual programming style of such programs as Max/MSP or PD has won

over almost all practitioners in computer music. For this reason, some of our future plans con-
cern the establishment of interfaces between our system and these highly popular music pro-
grams. All our software is based on cross platform libraries that are available under an Open
Source license for Mac OSX, Linux, and Windows. By distributing the ISO tools as Open
Source software and hardware, we hope that their usage will transgress the confinement of our
own institute and help to create a community of programmers, musicians and researchers who
contribute to their further development.

At the current project stage, we have developed individual software components for sound
synthesis, sound projection, swarm simulation, and camera-based tracking.

ISO Synth

ISO Synth is a C++ library for realtime sample- and synthesis-based computer music creation,
which we have developed from scratch. We resorted to this effort in order to guarantee a
common implementation standard and optimal interoperability with other ISO tools. ISO
Synth implements an event-based score mechanism and supports sound spatialization via two
and three-dimensional ambisonic projection [13]. It supports a variety of standard signal proc-
essing and sound synthesis techniques. For
signal processing, these are: sampling,
pitch shifting, time stretching, conversion
between time and frequency domain and
filtering. For sound synthesis, these are:
additive, subtractive, wavetable, granular,
frequency modulation, amplitude modula-
tion, waveshaping, phase distortion,
sample-based synthesis.

ISO Synth implements the widespread
“Music N” unit generator concept [14]. A
unit forms the basic building block for the
creation or processing of audio signals.
Depending on the their functionality, units
possess a variety of ports that allow them
to exchange audio data and communicate
with other units in a patch (see Figure
3).There exist four different types of ports.
Input ports retrieve audio data from con-
nected units. Output ports pass audio data
to connected units. Control ports retrieve
both audio data and events and thereby
change some properties of the associated unit. Switch ports are intended for infrequent
changes that alter a unit’s behavior more substantially than control ports do (i.e. setting a unit
inactive, loading a new amplitude envelope etc.). A list of currently available units is pre-

Figure 3: ISO Synth Unit Properties. Arrows
indicate any number of inputs. Audio data
stands for continuously changing input data.
Event data represents data values that change
at discrete and possibly irregular time intervals.
Function calls allow the re-configuration of
ports during run time.

sented in table 1. ISO Synth possesses some less common properties, which contribute to its
flexibility and form the basis for its interaction with other ISO tools. Every port and every unit
can possess a different audio rate, channel count, and buffer size. The connections between
ports automatically take care of necessary signal conversions. There exists no explicit distinc-
tion between audio and control rate. All control ports operate at audio rate unless explicitly set
to a lower rate. Unit patches are not restricted to directed graphs but may contain cycles (in-
cluding connections from the same unit’s output port into its input or control ports). Units can
be nested and communicate via internal ports. An entire patch can be serialized, saved and
restored at any time during its operation. Patches can exchange arbitrary data via UDP with
other ISO tools.

Unit Class Name Function Unit Class Name Function

FFTUnit Fast Fourier Transform BWFilter Butterworth Filter

IFFTUnit Inverse Fast Fourier Transform CombFilter Comb Filter

SampleUnit Loop, Transpose, Reverse FSMFilter Frequency Sampling Filter

PointEnvelope Break Point Envelope ResonFilter Reson Filter

BLPulseGen Band Limited Pulse Generator VocalFormantFilter Vocal Formant Filter

DCSPulseGen Dynamically Controlled Spectrum
Pulse Generator

FFTStrech Spectral Frequency Stretching

NoiseI Interpolating Uniform Noise FFTThreshold Spectral Amplitude Thresholding

NoiseS Stochastic Noise FFTPhaseMultiply Spectral Phase Multiplication

WaveTableOscil Wavetable Oscillator FFTAmpDerivative Spectral Amplitude Derivative

DelayUnit Delay Line Unit GranularUnit Granular Synthesis

WaveTableShaper Wave Table Shaping Decoder Ambisonics Decoder (2D & 3D)

AllPassFilter All Pass Filter Encoder Ambisonics Encoder (2D & 3D)

Table 1: A Selection of ISO Synth Unit Types.

ISO Tracker

At the moment, ISO allows interaction via Midi or camera-based tracking. Midi-based inter-
action is implemented as part of the ISO Synth tool. Camera-based interaction is realized as
two separate applications that rely on Intel’s computer vision library [15]. Our focus on
camera-based interaction (instead of other technologies such as wearable sensors, electromag-
netic or ultrasonic tracking) is based on reasons of cost and flexibility and because an unteth-
ered setup simplifies participatory or casual forms of interaction. ISO Tracker detects the mo-
tion, position and orientation of an arbitrary number of persons and transmits these data via
UDP to ISO Flock. Motion tracking is implemented via a pyramid approach as described in
[16].

Figure 4: SwissRanger SR-2 based tracking. The screenshots depict a person’s outline,
bounding box, orientation (thin lines) and motion (thick lines). The person’s moving hands
are distinguished via Motion Segregation. In both images, the camera is mounted to the
ceiling and points straight down. Left side: sidewise tracking view illustrating the combi-
nation of brightness and distance information. Right side: top-down tracking view empha-
sizing the detection of hand motions.

Motion segregation usually allows to distinguish between different body parts (i.e. hands,
head, and feet) as long as a person is moving. The tracking software exists in two versions.
One version supports standard video or web-cams that capture 2D color or grayscale informa-
tion. A second version of the tracker software has been specifically written for the Swiss-
Ranger SR-2 camera [17]. This camera employs the time-of-flight principle by emitting
modulated infrared light. The time of arrival of the reflected light allows the computation of a
“distance image” at a resolution of 124 x 160 pixels. Thanks to the availability of distance in-
formation, this specific tracker software version exceeds the capabilities of the 2D tracker in
that it tremendously simplifies occlusion problems. Furthermore, if the camera is pointing
straight down from the ceiling, it allows the calculation of a person’s height, vertical motion
and vertical orientation. Unfortunately, the SwissRanger camera suffers from a serious draw-
back with regard to our application. The fixed focal length characteristics of its lens in combi-
nation with maximum tracking distance of 7 meters results in a very small surveillance area.
This camera is therefore unsuitable for tracking people in a space larger than a few square me-
ters.

ISO Flock

Most of our implementation effort has been put into the development of a generic swarm
simulation library. The main non-generic aspect of this library concerns its focus on simulat-
ing large numbers of agents each of which possesses a very simple morphology. In particular,
there are currently no facilities for modeling segmented body architectures that exhibit rigid
or soft body dynamics. Apart from this restriction, the library allows the realization of a vast
variety of swarm simulations.

The implementation of ISO Flock defines a
small set of main classes (see figure 5) from
which simulations can be built either by con-
figuring these components or by creating de-
rived classes. The simulation class manages
all agents and updates all other classes at
regular intervals. The swarm class acts as a
labeled container for agents which are func-
tionally equivalent. It provides functions for
creating or deleting agents at runtime and
manages the exchange of data via UDP with
other ISO tools.

Agents are labeled containers for parameters
and behaviors. Parameters represent labeled
vectors of arbitrary dimension and manage
relationships (euclidian distance and direc-
tion) with other parameters organized in
neighbor groups. Agent behaviors define
functional relationships among parameters.
Behaviors distinguish between input parame-
ters, internal parameters and output parame-
ters. Internal behavior parameters are specific
to a particular behavior and are created when
the behavior is instantiated for the first time.

Figure 6: Evasion Behavior. For simplicity, only
two agents are depicted. At the beginning of a
simulation step, the location of the parameter
position is updated in the space entitled “agent
world”. Then, the distance between the two po-
sition parameters is calculated and their neigh-
borgroups are updated. Subsequently, the eva-
sion behavior within each agent changes the
force parameter based on the values of the posi-
tion parameter and its neighbors. At the end of
a simulation, all parameters update their values
based on the changes that have been caused by
the behaviors.

Figure 5: Main Classes of the ISO Flock Library.

Whenever a behavior is executed, it reads from its input and internal parameters as well as
neighbor groups and writes into its output parameters. These changes are buffered within the
output parameters. This helps to avoid that the simulation output is affected by the particular
sequence in which behaviors are executed. All parameters are normal agent parameters and
their distinction into different types (internal, input, output) applies only for a particular in-
stantiation of a behavior. Whenever a new behavior is created, the supplied parameters can
have entirely different types. It is important to note that parameters cannot only be changed by
behaviors but also by an event-based system. The event system provides the same functional-
ity as in ISO Synth and permits score-like choreographing of agent parameters. Events can
also be created on the fly such as for example when certain conditions are observed by the
camera tracking software. The last fundamental ISO Flock class deals with spatial calcula-
tions. This space class contains spatial partition algorithms for the calculation of euclidian dis-
tances among parameters and thereby manages their neighborhood relationships. Parameters
can simultaneously exist in an arbitrary number of spaces. One of the consequences of the ge-
neric nature of agents, parameters and spaces is the somewhat counterintuitive fact, that it is
not the agents that exist in a particular space world but rather their parameters. It is not neces-
sary to take this peculiarity into account when designing fairly standard types of agents (i.e.
agents that possess the properties of position, velocity and acceleration and that only map
their position into a space that would conceptually correspond to the classical agent world).
On the other hand, our generic parameter neighborhood approach allows for unconventional
interactions among agents based for example on character trait relationships. Figure 6 depicts
the relationship between agents, parameters, behaviors and spaces for a simple evasion behav-
ior.

Table 2: A Selection of ISO Flock Behaviors.

Behavior Name Function

AccelerationBehavior Limit linear and angular acceleration of parameter values

AlignmentBehavior Push parameters (typically velocity) towards similar values depending on the neighborhood
of other parameters

BoundaryWrap Wrap parameter values when they exceed certain limits

BoundaryRepulsionBehavior Update a parameter (typically force) when other parameter values exceed certain limits

CohesionBehavior Push neighboring parameters towards similar values

DampingBehavior Push parameter towards a fixed value

EvasionBehavior Push values of neighboring parameters away from each other

GridAverageBehavior Change parameter value based on the averaged vector field values in the parameter’s neigh-
borhood

SplineFollowBehavior Push parameter value towards and along a spline line extending through parameter space

In its current implementation, the ISO Flock library provides a group of specialized spaces
and behaviors that inherit from the generic base classes. The “point space” class manages dis-
tance calculations among point-like spatial objects (i.e. parameters) via a Quadtree, Octree or
higher dimensional space partitioning algorithm. The “shape space” class implements an R-
Tree algorithm for the calculation of distances among objects in space that possess a shape (as
opposed to point like objects). This allows agents to move along splines or on the surface of
triangulated meshes. Such spatial objects can be employed to structure the environment within
which agents exist. An example application transforms the tracked outline of people into a
spline that serves as movement guide for agents. For a similar purpose another type of space
manages the distribution of vectors on an n-dimensional regular grid. Such grids can serve for
example as static or dynamic force fields and propel or slow down agents as they move
through space. Another example application updates such a force field based on tracked visi-
tor motion. With regard to behaviors, there exists a small selection of example implementa-
tions. Table 2 lists some of these behaviors.

We have created a series of simulation applications that are based on the functionality of the
ISO Flock library. In all these applications, the agents’ positions have been drawn as trajecto-
ries in three dimensional space. Figure 7 shows the visual output of some of these applica-
tions.

Figure 7: A Selection of ISO Flock Simulation Applications. The visual output is created by
drawing the agents trajectories for the duration of 1000 simulation steps. Top row from left
to right: random agent movements within repulsive boundaries, standard BOIDS type of
flocking, agents moving towards point attractors. Bottom row from left to right: agents
moving within a force field created from a Roessler equations, agents following splines cre-
ated from letters, agents moving towards the surface of a human head mesh model.

 4. Results and Discussion

Our implementation efforts have led to the creation of a series of ISO tools that should be suf-
ficiently generic and flexible to create a wide variety of swarm simulation-based computer
music. The stability and performance of all tools have been tested when running for extended
periods of times (several days). We are therefore confident, that the tools reliability is per-
fectly sufficient for critical real-time performances or long-lived installation projects. All tools
are extensively documented on our project site [12]. Apart from implementing the desired
functionality, all ISO libraries have gone through several cycles of evaluation and feedback by
musicians working at our institute which helped us to simplify the APIs. For this reason, the
ISO project is on the verge of going beyond its pure implementation stage and can now be
employed for research and music creation. Several composers at the institute have started
working with the software. We are in the early stages of planning a dance choreography that
employs ISO Flock to link the dancers’ motions with a live computer music improvisation. At
the current project stage, we believe it is crucial to start establishing and maintaining a com-
munity of users and programmers who contribute to the further improvement of the ISO tools.
For this reason, we have started to provide workshops for interested musicians and artists and
added some online community tools to the project site such as a Wiki and a Forum. A first
workshop has taken place at our institute and a second one will have been conducted by the
time this paper is printed at the Tama Art University in Tokyo, Japan. A further workshop is
planned in Bangalore, India in the beginning of 2008. Due to the fact, that the project just re-
cently started to focus on the promotion of its tools for application in art and science, we are
not yet able to present artistic realizations or scientific experiments that help to evaluate the
suitability and limitations of our approach to computer music generation. This activity will
form the main focus throughout the planned extension of the ISO project.

5. Conclusion and Outlook

So far, the ISO project has successfully created a coherent and flexible software infrastructure
that will help to realize swarm simulation-based computer music for research and perform-
ance. Due to the project’s initial focus on implementation and documentation of these soft-
ware tools, the evaluation of the general suitability of our approach to computer music genera-
tion needs to be postponed to another paper.

Feedback from our first ISO workshops indicates that many computer musicians express curi-
osity and interest about the combination of swarm simulations and computer music. On the
other hand, most of the workshop participants possessed little more than a vague and abstract
idea concerning the properties and capabilities of swarm simulations and how these properties
could be linked to computer music. Hardly anybody in our workshop audience was aware of
existing examples of simulation-based computer music let alone experimented with these pos-
sibilities. For these reasons, we conclude that our effort to provide an coherent and (at least
for musicians with programming experience) simple to use hard- and software infrastructure

constitutes a very important step towards the promotion and exploration of ALife-based com-
puter music.

We currently hope to extend the ISO project for another two years. This extended period of
time will allow us to focus on the main questions concerning swarm-based computer music
and give us the opportunity to realize a variety of performances that hopefully highlight the
aesthetic potential of this approach. Of particular interest are the following questions: How
does swarm-based computer music improve explorative composition and improvisation
styles? Does swarm-based computer music redefine the relationship, role and authorship be-
tween musician, the machine and the audience? Will swarm-based music enhance the applica-
tion and control of traditional forms of sound synthesis or might it even give rise to entirely
novel forms of synthesis? Is it necessary and possible to establish psycho-acoustic principles
and guidelines for swarm-based computer music? Will spatial sound projection significantly
contribute to and improve the perception and appreciations of swarm-based computer music?
Will swarm-based computer music help to create novel forms of art collaborations for exam-
ple between computer music, dance, interaction design and visual design?

So far, ISO Synth implements a variety of popular and widespread sound synthesis algo-
rithms. None of these algorithms is of particular interest or suitability for swarm-based com-
puter music. It would be much more interesting to experiment with entirely novel synthesis
techniques that are closely related to capabilities of swarms. For example, physical modeling
techniques that rely on the interaction of non-stationary objects, changing topological rela-
tionships and dynamic alterations of object properties, such as for example chemical reactions
or grainy or powdery materials, might be particularly interesting. It might also be interesting
to devise biologically inspired synthesis techniques the rely on swarm behavior. For example
signaling among songbirds, or mating call strategies during rutting seasons.

While developing the ISO Flock library, we relied on visual feedback for debugging and
analysis of the agents’ behaviors. The aesthetics of this visual feedback and its possibly im-
portant role in creating multi-modal feedback have entirely changed the priority of this ini-
tially circumstantial activity. For this reason, we plan to create an additional ISO library that
will take on the role of a visual synthesizer and complements the functionality of ISO Synth.

So far, we rely entirely on camera-based interaction for controlling the swarm simulation.
This type of interaction excels with regard to cost and flexibility but otherwise suffers from
severe limitations. Camera-based interaction is notoriously prone to calibration and occlusion
problems. Furthermore, its is very difficult to derive accurate and semantically meaningful
information from camera images. Finally, camera-based interaction does in itself not provide
any feedback for the performer. It will be interesting to envision novel types of interfaces that
provide for example haptic cues and are specifically designed to improve the performance of
swarm-based computer music.

References

[1] Sommerer, C. and Mignonneau, L. (2000). Modeling Complex Systems for Interactive Art.
Applied Complexity - From Neural Nets to Managed Landscapes. Institute for Crop & Food Re-
search, Christchurch, New Zealand, pp. 25-38.

[2] Martinoli, A. (2005). Swarm intelligence: emergence and self-organization in natural and arti-
ficial systems. Course notes, EPFL.

[3] Eberhart, R., Shi, Y. and Kennedy, J. (2001). Swarm Intelligence. Morgan Kaufmann.

[4] Blackwell, T. (2003). Swarm music: improvised music with multi-swarms. Artificial Intelli-
gence and the Simulation of Behaviour, University of Wales.

[5] Blackwell, T. and Young, M. (2004). Self-organised Music. Organised Sound, Cambridge
University Press, 9, pp. 123-136.

[6] Blackwell, T. and Young, M. (2004). Swarm Granulator. EvoWorkshops 2004, Coimbra, Por-
tugal, pp. 399-408.

[7] Unemi T. and Bisig D. (2007). Identity SA - an interactive swarm-based animation with a de-
formed reflection. Proceedings of the Generative Art Conference. Milano, Italy, in print.

[8] Unemi, T. and Bisig, D. (2005). Music by Interaction among Two Flocking Species and Hu-
man. Proceedings of the Third International Conference on Generative Systems in Electronic
Arts, Melbourne, Australia, pp. 171-179.

[9] Unemi, T. and Bisig, D. (2004). Playing Music by Conducting BOID Agents. Proceedings of
the Ninth International Conference on Artificial Life IX, Boston, USA, pp. 546 - 550.

[10] Bisig, D. and Unemi, T. (2006). MediaFlies - A Video and Audio Remixing Multi Agent
System. Proceedings of the Generative Art Conference, Milano, Italy, pp. 63-74.

[11] Uozumi, Y. (2007). GISMO2: An Application for Agent-Based Composition. Lecture Notes
in Computer Science, Springer Berlin/Heidelberg

[12] ISO website: http://www.i-s-o.ch

[13] Malham, D.G. and Anthony, M. (1995). 3-D Sound Spatialization using Ambisonic Tech-
niques, Computer Music Journal 19(4).

[14] Dodge, C. and Jerse, T.A. (1985). Computer Music, Schirmer Books, New York, USA.

[15] OpenCV website: http://www.intel.com/technology/computing/opencv/index.htm

[16] Davis, J.W. (2001). Hierarchical motion history images for recognizing human motion.
Proceedings of the IEEE Workshop on Detection and Recognition of Events in Video, pp. 39-
46.

[17] SwissRanger specifications:
http://www.csem.ch/detailed/pdf/p_531_SR-2_Preliminary-0355.pdf

