
XXII Generative Art Conference - GA2019

page 1

Metagaming Concepts for Analysing
Techniques and Aesthetics in Bytebeat

Performance:
The Technology Tree, the Tier List, and the

Overpowered

Prof. Jeffrey M. Morris, DMA.
Department of Performance Studies, Texas A&M University, College Station,

Texas, USA
www.morrismusic.org

e-mail: morris@tamu.edu
__

1. Introduction

As a composer, I make music for a variety
of unique situations, including site-specific
work and serious concert music for toy
piano, slide whistle, and Sudoku puzzles.
For each work, I seek a composition
technique that engages and challenges
the situation at hand, e.g., turning glitches
into featured elements or using data about
a place to shape music that will be played
there, an approach I call native
composition. Feedback loops, intermedia
translations, and intentional misapplication
are common techniques in this approach,
and they require an intimate
understanding of the situation at hand,
including any subject matter and media
involved, in order to find ways to make it
sing most naturally. In my technology-
based performance, I have pursued
bytebeat programming, which is such a
heavily constrained protocol that the
programmer is constantly immersed in —
and must wrestle with — the most basic
nature of the digital computer. It is so
restrictive that it almost seems impossible
to make any serious music with it,
especially by any familiar and convenient
techniques, and many basic
achievements feel like clever hacks.

I taught a course on bytebeat
programming in spring 2019 at Texas
A&M University. As I prepared
demonstrations, as the class discussed
and explored examples, and we created
solo performances and improvised
together, we created tutorials, began
compiling a knowledge base, and
encountered many accidental discoveries
about bytebeat programming, its tools,
and its aesthetics. This paper is not a
tutorial on bytebeat programming
techniques, but certain technical concepts
are explained in order to facilitate a
discussion of aesthetics.

Structures from video games like the
technology tree and the tier list emerged
in our knowledge base as we continued to
fill and organise it. Practical needs for
focused assignments, improvisational
prompts, and clear and fair grading led us
to adopt gaming concepts like challenge
modes and the overpowered in our
discussions. In reflecting on the lessons of
our bytebeat experiences, the metagame
emerged as an enlightening framework for
discussing the aesthetics of bytebeat and
exploratory programming in general, as
well as the nature of exploratory research.

XXII Generative Art Conference - GA2019

page 2

2. Background

This discussion brings together concepts
that are related in complex or subtle ways,
and ones that seem increasingly distant
from music and aesthetics. Before
bringing them together to discuss
techniques and aesthetics in bytebeat
performance, this section presents each
concept separately.

2.1 Bytebeat

Bytebeat is a computer programming
practice for making music from a single
line of code, often a single mathematical
expression with a highly restricted set of
operations. It was introduced by Ville-
Matias Heikkilä (known by the
screenname viznut) in 2011 [1]. It
received a flurry of attention for a couple
of years, fell into obscurity as a novelty,
and has recently attracted more serious
attention by a few scholar-artists [2], [3].

In this protocol, a bytebeat interpreter
program allows a user to enter a
mathematical expression that applies
arithmetic and logical operations to a
variable, t, which represents time as a
constantly rising counter. The interpreter
evaluates this mathematical expression
inside a for-loop, sends the evaluation to
the audio output, and increments t. It
continually re-evaluates the expression
and sends it to the audio output with each
new value of t, usually around 8,000 times
per second for an acceptable audio
sampling rate.

For example, the following expression
creates a brief looping passage known as
the “Forty-Two Melody” (origin unknown).
It includes multiplication (*), a bitwise
AND operator (&), and a bitwise right-shift
(>>):

t * (42 & t >> 10)

One popular bytebeat interpreter, which
we in the class came to call by the handle
Greggman, as it was created by Gregg
Tavares, runs in a web browser [4]. Since
many bytebeat interpreters allow users to
change the input expression in real time,
they can be used for live coding
performances. The dense level of
mathematical abstraction is what keeps
the artist in an exploratory (rather than
deterministic) programming mindset,
especially during a live coding
performance, even if a random number
generator is not employed.

This practice emerged from the
demoscene, an art- and skill-focused
outgrowth of the early software cracking
community (which means to bypass
software copy protection mechanisms).
Whereas early software crackers would
add animations to cracked software in
order to sign their work and further
demonstrate their skills and style, the
demoscene leaves cracking aside and
focuses solely on the programmer’s ability
to achieve the most creative and
sophisticated results from the most
compact code.

Since bytebeat code is so constrained and
compact, it does not require fast or
sophisticated computer power. It would
have been possible (as a non-real-time
practice) as early as the mid-1950s,
sometime after Alan Turing (UK) and
Geoff Hill (Australia; both working
separately) first used computers to play
melodies by varying the speed of the
computer’s alert buzzer in 1951. Artist-
programmers could have pursued
bytebeat even before Max Mathews
created the first music and sound
programming language, called MUSIC, at
Bell Labs in 1957. So, bytebeat is an
anachronism, a branch of computer music
history that was made possible in the
1950s but lay unexplored for almost 60
years, while history instead built upon
Mathews’ MUSIC language and its

XXII Generative Art Conference - GA2019

page 3

orchestra–score structure that became
pervasive in almost every computer music
development after it.

2.2 The Technology Tree

First appearing in the 1980 Civilization
board game [5] and having expanded in
the long-running Civilization video game
series since 1991 [6], the technology tree
(or succession table, as the original game
called it) is a branching path of options for
players to advance their abilities within a
game incrementally, building upon
previous choices. For example, since
Civilization-style games mimic the
historical evolution of human societies,
when players have opportunities to
advance their respective societies in the
game, they might choose to “research”
incremental options in the agriculture
path, in order to develop animal
husbandry abilities, which allows them to
develop horseback riding skills in future
turns, which in turn makes cavalries
possible. Alternatively, players might
choose to advance along a path that
starts with mining, which leads to
metalworking, which can enable better
construction, weapons, or other
technologies. The technology tree
throttles the evolution of gameplayer
abilities by forcing players to prioritise
certain paths over others or to prioritise
breadth over depth. It balances power
while promoting diverse abilities and
strategies among players, keeping the
game fair and engaging. Tuur Ghys [7]
gives a comparative analysis of
technology trees in this type of video
game, within a Game Studies context.

For applying this structure more broadly,
the hybrid term succession tree might be
more neutral and appropriate. Even
Civilization-style games include paths to
develop aspects of culture and
government, but the term technology tree
is still used the most, and it is

unproblematic to use in this paper, given
its subject matter.

2.3 The Tier List

Compared to the technology tree, the tier
list deals with similar factors, but it
considers them from the opposite
perspective: it is a synchronic, ranked
taxonomy of game characters or tools in
their completed states or their current
states of development, for analyzing a
game in terms of balance or for a player to
strategically choose game characters or
tools that would perform favorably against
a given challenge. Because of this
application, tier lists often emerge from
players’ analyses of games, periodicals
that review video games, and
organizations that host gaming
competitions. Tier lists inform balance—a
fair fight—as weight classes were meant
to do in boxing, and good balance is
considered essential for satisfying
gameplay.

Tier lists may be compiled by comparing
individual attributes (if they are quantified
and disclosed, e.g., speed, intelligence, or
hit points), by considering the results of
past matchups, by public opinion polls, or
simply by intuition. They commonly result
in grouping characters that are
approximately balanced with each other,
each having different particular strengths
and weaknesses in relation to the others.
Because video games are popular media
and tier lists are heavily discussed among
gamers, this concept has made its way
into Internet memes reflecting on other
aspects of life and culture [8], and it has
proven to be a useful framework in
popular media outside of gaming. This is
in part because, as a tool designed to
assess balance, it exposes areas that lack
balance, in which one element is
overpowered (or OP) in relation to
another.

XXII Generative Art Conference - GA2019

page 4

2.4 The Overpowered and Its
Opposite

Applying a tier list framework to
phenomena outside of gaming can lead to
novel and valuable observations. For
example, a Tier Farm video on
evolutionary biology [9] states: “Sloths are
the worst-ranked build in the entire game
[i.e., current reality].” It goes on to
describe ancient sloths, in contrast, as
overpowered, and surprisingly, and it
argues that the overpowered Ice Age
sloths died out because they were
overpowered, leaving only modern sloths
surviving. It concludes that “sometimes it
pays to be low-tier.”

Beyond the notion of winning, however it
is defined, early game designer and
theorist Chris Crawford emphasised the
“illusion of winnability” [10]. Besides the
obvious goal to win a game, this
statement has two equally crucial and
opposing components: if a game is
impossible to win, a player will be
unmotivated to play it; however,
motivation also wanes when the game is
finally won. Therefore, Crawford stipulates
that a player must feel like a game is
winnable and that this must remain only a
feeling. Winning must remain elusive, or
else the game will end. Of course, some
games do end; on the other hand, there is
more than one way to play some games.

Overpowered elements are considered
poor game design, and using them is
considered to be dishonourable, because
it usually leads to predictable,
uninteresting gameplay. Conversely, and
beyond simply avoiding overpowered
elements, it is considered especially
honourable to take on special challenges
in gameplay, such as using the weakest
character or by completing a game with
the lowest score possible (in a game that
expects players to pursue high scores)
[11]. These may be self-imposed,
stipulated by competitive organisations, or

offered in the game as special challenge
modes. This is a kind of honour similar to
that found in demoscene and bytebeat
communities.

2.5 The Metagame

The point of a game, within the world of
the game, is simply to win. These gaming
concepts, the technology tree, tier list, the
overpowered, and special challenges, all
consider the game from outside the world
of the game. They serve strategic
gameplay and the analysis of games, and
they unlock other forms of honour, beyond
the simple high score. Because they are
about the game but outside it, and
because they also may be game-like in
themselves, these concepts come
together under the term metagaming, or
the game of playing games.

3. Applying Gaming
Concepts to Bytebeat

3.1 Pedagogy

A technology tree emerged in our class
knowledge base as I sought to introduce
new techniques incrementally and break
down examples so they could be
understood in terms of more fundamental
principles working together. The following
demonstrates possible paths of learning
and applying skills by navigating a
technology tree. It is not necessary to
understand the technical terms introduced
here, only how they build upon and work
with each other.

One branch of development might start
with a noise generator. A relatively
compact and satisfying (although not
entirely pure) noise generator in bytebeat
is as follows. Variables, spaces, and line
breaks are used to facilitate readability
and discussion, but they are not
necessary.

XXII Generative Art Conference - GA2019

page 5

a = t * t % ((t % 10) +
256)

Having achieved a noise generator, one
could pursue multiple development paths.
For example, to make a rhythmic burst of
noise, create a sloped ramp:

b = t / 1000

Then use the sloped ramp as an
amplitude envelope (fading it out over
time, restarting each time you restart the
interpreter’s clock):

a / b

The whole resulting program would be:

a = t * t % ((t % 10) +
256),

b = t / 1000,

a / b

Or, in its most compact form:

(t*t%((t%10)+256))/(t/1000
)

While this is not a very interesting result in
itself, it is on a path toward creating
something like the following code. To use
terms from our technology tree, it
encapsulates the sloped ramp (by
applying
% 256 to it), to make a recurring
amplitude envelope, and it replaces the
slope of that sloped ramp with another
sloped ramp so that the rate of the
recurring amplitude envelope changes
over time.

(t * t % ((t % 10) + 256))
/

((t / ((t / 1000) % 50))
% 256)

In an alternative path of development, one
could take the original noise generator
and combine it with a sample-and-hold
function to create a random number
generator with an arbitrary rate of output.
Having created this random number
generator, one might add its latest output
to its previous output to create a drunk
walk. Or, one could apply a Boolean test
(e.g., > 128) to the random number
generator and multiply the result by some
other sound-generating code (a technique
called a gate), which would create a sieve
(which would turn the sound on and off,
randomly). Explaining all of these terms is
beyond the scope of this paper, but I have
taken care to use the most standard and
clear terms for each of these techniques
as they lie along their respective paths in
the technology tree.

3.2 Taxonomy

In the class, while conducting controlled
demonstrations to isolate and teach about
certain specific aspects of bytebeat
programming, we discovered several
undocumented differences between
bytebeat interpreter programs. The task of
an interpreter seems straightforward, all
interpreters appear to be roughly
equivalent regarding the basic task, and
these differences may seem
inconsequential. However, they resulted in
significant differences in musical results
and even made it impossible to reach
some areas of the technology tree using a
given interpreter.

For example, most bytebeat interpreters
allow users to assign values to variables
that can be used elsewhere in the code.
However, some interpreters initialise
these variables outside the for-loop. This

XXII Generative Art Conference - GA2019

page 6

means they are external variables in
relation to the bytebeat code. This allows
a user’s code to recall the last state of a
variable so that information can persist
across iterations of the for-loop. Without
external variables, recursive variable
assignments are impossible (e.g., x = x
+ 1), and this is necessary for many
common and rewarding structures, such
as the sample-and-hold and drunk walk
mentioned above, as well as counters and
Euclidean rhythms. BitWiz [12] is an
interpreter that uses external variables.
Greggman does not, although we
discovered an exploit that would allow us
to achieve this functionality in some
cases.

So, interpreters that allow external
variables lie in a different category of
sophistication. On the one hand, one
might argue that such stateful code is
more impressive because it has a larger
technology tree to master and coordinate;
on the other hand, one might say
stateless code is more respectable
because of its greater limitations or
because it is more pure or elegant. Either
way, we realised that it is worth
segmenting technology trees into tiers like
these and that the knowledge of what tier
a programmer is using can affect our
impression of the performance.

Another tier includes interpreters that do
not limit themselves to the 8-bit (range of
256) output values that are traditionally
used. Greater bit depth yields higher
audio quality and smoother control curves,
yielding a less glitchy, noisy, and
retrospective sound. Indeed, since most
interpreters run on computers that can
handle floating points, the tradition of
dealing only with integers is nostalgic but
not necessary. Further, restricting outputs
to low-bit integers is not necessarily
authentic to historic processors. Through
accidental discoveries and controlled
follow-up explorations, we discovered that
some interpreters preserve floating-point

values until the final output, which a
computer without a floating-point
processor would not be able to do.
Differences in when and how values are
integerised (e.g., by rounding down, up, or
to the nearest integer) can significantly
affect the resulting sound and the user’s
capability. For example, although “/
1024” is considered equivalent to “>>
10,” the following two expressions yield
drastically different results in Greggman (a
bass arpeggio versus a smooth full-range
sweep), whereas both versions sound
identical in BitWiz (bass arpeggio):

t * ((t >> 10) % 4)

and:

t * ((t / 1024) % 4)

Further, code that uses trigonometric
functions stands apart from others. A sine
function allows users to achieve common
computer music techniques like additive
synthesis and frequency modulation
synthesis easily. Trig-tier code allows
greater sophistication, but it is less native
to the notion of bytebeat, and it is more
like other platforms that would be easier to
use instead.

Other classifications include (a) infix
notation (as used above) versus postfix
notation (as in Reverse Polish Notation),
which makes certain coding techniques
easier and others more difficult, especially
during live coding; (b) external control
inputs, such as accelerometers, cursor
position, MIDI or OSC input, or even audio
input; and (c) video capability, allowing the
same code to create sound and
animations, as with Heikkilä’s IBNIZ [13].

Taxonomies emerged pragmatically in our
class knowledge base, to segment our
technology tree into levels of difficulty and
to articulate the strengths and limitations
of a given interpreter. However, they also

XXII Generative Art Conference - GA2019

page 7

allowed us to begin to reflect on other
thoughts to be had about a performance,
once its tier or class is known.

3.3 Aesthetics

The technology tree concept is parallel to
the pedagogical concept that made it
necessary for my teaching (and for my
learning): the zone of proximal
development. Early twentieth-century
psychologist Lev Vygotsky depicted the
education process by articulating the set
of things a student has mastered and the
set of things the student has not
mastered. The zone of proximal
development is the liminal area, where
learning objectives lie that are outside the
student’s area of mastery but which the
student could master, with assistance (by
an instructor) [14]. This process bears a
resemblance to Crawford’s “illusion of
winning” in game design. The technology
tree makes learning incremental and
makes the zone of proximal development
apparent, while it remains impossible to
master all the possible combinations of
techniques and creative ways to use
them.

This concept of balance between the
possible and the impossible can also be
rewarding to audiences, even if they are
not trained in performance. For example,
watching a live, acoustic performance of
Rimsky-Korsakov’s “Flight of the
Bumblebee” [15] is exciting, in part
because of the violinist’s obvious training
effort and dexterity. Using a piano roll
MIDI sequencer to play the same music
would not achieve the same excitement,
even though it could play much faster than
the violinist. This is because the piano roll
is overpowered in relation to the violin, in
this case.

Next, consider this version of the same
music:

t*((p=(q=t>>11)%4<3)*18+(
(r=1-p)*2-

1)*(t>>9)%4+r*13+(q&1))

This version of the opening motive is titled
“Byte of the Bumblebeat.” (An attentive
listener will notice that this is slightly
different from Rimsky-Korsakov’s version;
this is discussed in section 4.1.)

Even though it is like the piano roll version
in that it is fully automated and only
requires a human to press the Play
button, the bytebeat version might
impress more audiences than the piano
roll version because of the difficulty of the
challenge. Here, speed and accuracy are
not the challenges; mathematical
complexity and elegance are.

It is traditional to include a visual element
in laptop music performance. The Dallas-
based Laptop Deathmatch series (now
defunct) scored stage presence along with
creativity and technique. It emphasised
giving the audience something to look at,
at least by using an external control
interface [16]. Projecting the performer’s
computer display during a live coding
performance has become a common
solution. Even for non-programmers in the
audience, seeing the code change and
hearing the sound change at the same
time makes the music seem accessible or
graspable, even more so if raising or
lowering a value results in a noticeable
increase or decrease in some aspect of
the sound. Even this barest understanding
of the performer’s technique can make a
performance more engaging, when the
next incremental level of sophistication
appears graspable while the full range of
creative possibilities feels infinite.

This might lead one to conclude that
visual elements or background knowledge
are necessary in order to make rewarding
musical experiences; however, this is not
true. Such extramusical factors (i.e.,
outside of the music) are often effective in

XXII Generative Art Conference - GA2019

page 8

making performances more engaging, and
they are often unavoidable — acoustic
performances always require the
performer to move, and those movements
betray information about effort and skill.
Because such elements are both effective
and unavoidable, it is easy for an
audience to rely upon them instead of
focusing solely on the musical content of a
performance. The path to purely musical
enjoyment involves the zone of proximal
development and a balanced “illusion of
winning” as well, suggesting that some
form of honour might come to an
adventurous listener. However, that is
beyond the scope of this paper.

Still, among practitioners, honour in
gaming, e.g., by embracing challenges
and not overpowered elements, is parallel
to honour in demoscene and bytebeat
programming, e.g., creative and elegant
results despite constraints, and
taxonomies help articulate those
properties. One element of risk in
bytebeat that is similar to the violinist’s
constant risk of missing a note might be to
use an interpreter that does not implement
an error checking process to prevent a
typed syntax error ruining a live coding
performance.

Beyond considering the capabilities of the
bytebeat interpreter software, taxonomies
could also classify various limitations on
the coding techniques used. For example,
it may be considered more honourable to
code without using commas, which
arguably break the “single line of code”
definition. In class, we discovered and
developed a number of techniques that lie
outside the code, including clever uses of
undo, redo, cut, and paste functions, line
breaks, comment characters, and even
physical, dextrous typing techniques we
came to call backspace flams (replacing
single characters almost instantaneously
by pressing Delete or Backspace and then
typing a new character, all in a quick, two-
stroke gesture) and padding and trimming

(quickly jumping to larger or smaller
orders of magnitude by placing the cursor
somewhere in a number and inserting or
deleting any digit, any number of times).

3.4 Nativeness

We used the following guidelines for the
purpose of grading in the class: (a)
performed the full work in a bytebeat
interpreter from beginning to end, limiting
any post-processing to minimal cleanup;
(b) only use basic arithmetic and logic
operators (e.g., not the sine function); and
(c) keep it “native,” i.e., do not use
bytebeat to achieve something that would
be more appropriate to do in another
platform, e.g., additive synthesis, sample
playback, or sequencing; external
controllers and data inputs were allowed,
as long as bytebeat was not used as in a
static way, as a synthesizer.

Further, while it was not prohibited, we
sought to avoid falling into Mathews’
familiar and pervasive orchestra–score
paradigm, which divides code into signal-
rate sound generators (as musical
instruments) and symbolic, control-rate
instructions for the orchestra to play (like
sheet music). This was another guideline
in pursuit of discovering and reflecting on
bytebeat’s native idiosyncrasies. Although
it is familiar and sensible, the orchestra–
score paradigm adopts the model of
musics that are structured in other ways
and probably would be unnative and
unnecessarily awkward to realise in
bytebeat. In contrast, bytebeat deals more
naturally with code in which the sound-
producing and sound-controlling elements
are inextricable. For example, changing
one character in “Byte of the Bumblebeat”
can dramatically change pitch, rhythm,
loudness, and timbre, all at once, whereas
a single change in the score for “Flight of
the Bumblebee” might well go unnoticed.

Beyond the practical need for a clear and
fair grading policy, and beyond the notions

XXII Generative Art Conference - GA2019

page 9

of challenge and honour (which are, after
all, extramusical factors), the purely
musical interest in considering classes
and tiers of bytebeat tools and techniques
lies in the fact that they each sound
different: they yield different subspecies of
bytebeat music. Since the goal of this
pursuit is to understand bytebeat’s
idiosyncratic nature (rather than to turn
bytebeat into other things), recognizing
and analyzing taxonomies — including
both their potential and the side-effects
they introduce — facilitates understanding
by helping to define purism, or different
types of purism, and various deviations
from it, in relation to their impacts on
creative processes and products.

4. Discussion

4.1 More about “Byte of the
Bumblebeat”

My approximation of Rimsky-Korsakov’s
“Flight of the Bumblebee” in section 3.3
differs from the original motive, in that the
original version uses groups of 5–3–4–4
notes, respectively, but my version only
uses constant groupings of 4–4–4–4. This
is in part because of difficulty but also to
facilitate discussion. Because of time
constraints, I would only be able to realise
the 5–3–4–4 grouping pattern by using a
certain technique that would simply be
overpowered for this task.

Ken Downey found a way to use a bit-
shifting operator on a single, large
hexadecimal number, to create a step
sequencer [17]. While this is a very clever
achievement, it would be similar to using a
piano roll MIDI editor to play “Flight of the
Bumblebee,” and I remain confident there
is another approach that is more
appropriate to the scale of this task and of
the rest of my code. Although I stopped
my work on it in order to discuss this
choice, in my next step, I would try to
exploit the rounding artifacts of

integerising the quotient of a ramp,
wrapped and scaled to a range of 3–5,
and offset so that it begins on 5 before
wrapping around to 3. I haven’t achieved
this yet, so I could be wrong here, but it
would be a more honourable approach to
this task.

Honour aside, Downey’s single-number
step sequencer technique opens a set of
possibilities so wide that it is worth
considering as a separate tier of
technique. For my goal of replicating
“Flight of the Bumblebee,” that tier seems
unnecessary, my finished product would
be a very poor representation of music
native to that tier, and inasmuch, I would
be missing my greater goal of
understanding bytebeat’s musical nature.
Here, extramusical honour and purely
musical lessons about bytebeat are
intertwined: honour has a stronger
connection to my intuition than my
abstract research subject matter does,
intuition informs my path of inquiry, and
the framework presented here helps me
articulate musical reasons for that gut
response.

4.2 The Metagame of Music

This discussion brings to light some
notions that deserve further exploration in
future work. Powerful tools are valued
when the point is to complete a task. The
dishonour of the overpowered reminds us
that the point of gaming is to play rather
than to finish, although success is also
valued, in balance. This is also how
extramusical elements can enhance a
performance experience — not what is
done but how it is done, the metagame of
performance. Extramusical elements are
not necessary for a rewarding musical
listening experience, but purely musical
enjoyment relies more heavily on the
mindset of the listener — a metagame of
listening musically.

XXII Generative Art Conference - GA2019

page 10

5. Conclusions

While a full technology tree and taxonomy
are still in progress, this account shares
unexpected lessons from the early stages
of developing and analysing bytebeat
techniques and aesthetics, toward
realising a full technology tree and an
optimal taxonomy of bytebeat techniques,
which will facilitate further analysis and
spark further creative exploration. To
summarise the relationships among these
concepts, the technology tree elucidates
how different abilities are interrelated, and
it informs choices regarding development
paths. Tier lists group feature sets by
approximate levels of sophistication or
power, and they expose the use of
techniques that are overpowered in
relation to the established context and the
task at hand. Special challenges lie in
contrast to overpowered approaches.
While they may be seen as more
honourable, this is in part because they
avoid invoking a higher tier of tools or
techniques than is necessary, allowing the
resulting achievement to more fully
explore and manifest the essence of the
tier it is primarily exploring. These
concepts are all parts of the metagame,
which, when applied as a lens upon
musical aesthetics, articulates the
influence of extramusical elements on
audience experience, as well as the
power and importance of the listener’s
mindset in listening musically.

Bytebeat purists are few if there are any.
Most treat bytebeat as a mere curiosity
and give the nod to demoscene-style
honour but readily embrace more
advanced taxonomies, perhaps because it
feels challenging enough to work under
the “single line” rule. I am not a purist,
either, although I find it useful to see
purism and deviations from it clearly
defined. I have pursued this research
path, most practically, for the pedagogy,
including advancing my own skills in
bytebeat performance. So, one could

make the self-similar reflection (a
metagame of research) that in pursuing
my personal path of development as an
artist-scholar, I chose to research
bytebeat pedagogy, which led me to begin
articulating a technology tree and led to
analysis and theory. The technology tree
put techniques at my disposal in
performance, in a conceptual framework
to navigate among them more facilely in
performance, but it also allowed me to
discover and articulate taxonomies of
bytebeat interpreters, which allowed me to
begin reflecting on the aesthetics of
bytebeat performance in the ways
described here.

Thanks to Peter McCulloch for many
enlightening discussions along this path of
inquiry, and thanks to the students of
PERF 318 Electronic Composition in
spring 2019 at Texas A&M University for
pursuing this inquiry with me. A playlist of
performances and tutorials resulting from
this class is available at:
https://www.youtube.com/playlist?list=PLe
4ojWnlX92OOrDhM8_yGIP9LNqSE_gR2

6. References

[1] V.-M. Heikkilä, “Discovering Novel
Computer Music Techniques by Exploring
the Space of Short Computer Programs,”
arXiv, Dec. 6, 2011.
https://arxiv.org/abs/1112.1368

[2] Vinazza, Gabriel. Rampcode (Version
4ff8343, 2019). Buenos Aires, 2018.
[Program Code].
https://github.com/gabochi/rampcode/

[3] N. Montfort, “Sound,” in Exploratory
Programming for the Arts and Humanities,
Cambridge, MA: MIT Press, 2016, pp.
249–256.

XXII Generative Art Conference - GA2019

page 11

[4] G. Tavares, HTML5 Bytebeat (Version
35874c1, 2019). Tokyo, 2012. [Online].
https://greggman.com/downloads/example
s/html5bytebeat/html5bytebeat.html
(Accessed: November 8, 2019).

[5] F. Tresham, Civilization. United
Kingdom: Hartland Trefoil, 1980. [Board
Game].

[6] S. Meier, Sid Meier’s Civilization: Build
an Empire to Stand the Test of Time. Hunt
Valley, MD: MicroProse, 1991. [Video
Game].

[7] T. Ghys, “Technology Trees: Freedom
and Determinism in Historical Strategy
Games,” Game Studies: The International
Journal of Computer Game Research, vol.
12, no. 1, Sept. 2012.
http://gamestudies.org/1201/articles/tuur_
ghys

[8] C_Mill24, “Tier Lists,” Know Your
Meme, 2016.
https://knowyourmeme.com/memes/tier-
lists (Accessed Nov. 8, 2019).

[9] Tier Farm, “Sloths Used to Be
Overpowered” (Nov. 10, 2018). [Online
Video].
https://www.youtube.com/watch?v=gn6sQ
t_wwBQ

[10] C. Crawford, “Design Techniques and
Ideals for Computer Games,” Byte: The
Smail Systems Journal, vol. 7, no. 12, pp.
96–98, 1982.
https://archive.org/stream/byte-magazine-
1982-12/1982_12_BYTE_07-
12_Game_Plan_1982#page/n97/mode/2u
p

[11] L. Sullivan, “13 Hardcore Challenges
Invented by Players,” GamesRadar+,
2015. https://www.gamesradar.com/13-
hardcore-challenges-invented-players/

[12], J. Liljedahl, Bitwiz Audio Synth:
ByteBeat Machine (2.3.6, 2017).
Stockholm: Kymatica, 2012. [Mobile
Application].
http://kymatica.com/apps/bitwiz

[13] V.-M. Heikkilä, IBNIZ. Oulu, Finland:
2012. [Computer Program].
http://pelulamu.net/ibniz/

[14] L. Vygotsky, Mind in Society: The
Development of Higher Psychological
Processes. Michael Cole, Ed., Cambridge,
MA: Harvard University Press, 1978.

[15] N. Rimsky-Korsakov, “Flight of the
Bumblebee,” in The Tale of Tsar Saltan,
1900. [Musical Composition].

[16] Laptop Deathmatch (Nov. 24, 2005).
[Archived Website].
https://web.archive.org/web/20051124055
942/http://www.laptopdeathmatch.com/

[17] K. Downey, “Mary Had a Little Lamb”
(Aug. 15, 2016) [Program Code], in a
comment on V.-M. Heikkilä, “Algorithmic
symphonies from one line of code -- how
and why?” (Oct. 2, 2011).
http://countercomplex.blogspot.com/2011/
10/algorithmic-symphonies-from-one-line-
of.html?showComment=1471248354487#
c6209059819789654981 (Accessed Nov.
8, 2019).

