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Premise 

This research describes instrumental role of artificially generated images during artistic 
judgment aptitude construct validation, then corroborates results with structural MRI brain 
scanning when hypothesis is an aptitude.  MRI scanning shows artistic judgment aptitude is 
mediated by several aesthetic neuron networks with suggestion of asymmetrical lateralization 
to right hemisphere. Prominent questions addressed by this research are, first, do MRI brain 
scans support validity of stochastic generative images for artistic judgment aptitude testing?  
Secondly, how does generative art facilitate and enhance traditional cognitive test validation? 
Do generative algorithms and MRI affect construct validity?  Finally, how might future research 
clarify other contributions of generative art to psychometric validation?  

1. Introduction  

Generative image algorithms have been developed for cognitive test models to assess 
verbal and spatial abilities in education and psychology [1, 2], but applications in 
aesthetics and visual arts, in general, are rare. Consequently, present research is first 
application of a generative algorithm to images presented during standardized artistic 
judgment (AJ) aptitude testing. This report describes contribution of generative art 
(GA) to AJ aptitude test development evaluated with structural magnetic resonance 
imaging (sMRI) technology. In this research, an AJ aptitude test model was first 
validated with conventional correlational procedures then investigated with sMRI brain 
scans.      

Generative algorithms in psychometrics conveniently manipulate image properties 
such as complexity, redundancy, and spatial organization, which has implications for 
perception of order, coherence, and meaningfulness. These properties are sometimes 
referred to as syntax or formal design, and their manipulation fundamentally influences 
image preference. Generative algorithms can also produce images with affective 
properties independent of artistic style, image narrative, or thematic context. For 
example, serenity, agitation, confusion, harmony, and anticipation are affective 
properties that have been expressed by generative algorithms.  Consequently, 
generative algorithms are very useful for experimental investigations that explore 
mental and personality development where control over image properties is important. 

Not only can generative algorithms specify syntactical and affective properties in 
images, but specific properties can be replicated exactly without duplicating overall 
images. By imposing a stochastic procedure on the image algorithm, every generated 
iteration of an algorithmic specification can display intended formal structure while 
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allowing overall image to vary randomly. Therefore, unique images with identical 
structural properties can be presented without creating boredom, fatigue, or concern 
that prior exposure will contaminate subsequent viewer responses.  
  
Generative image algorithms do not affect traditional psychometric validation 
procedures, which require correlation between hypothetical construct and empirical 
criterion.  In fact, generative algorithms improve construct development because 
specific image properties can be isolated and correlated with a criterion, which clarifies 
functional relations between properties and measurement target.  Doing so, generative 
algorithms address a long standing problem in conventional test validation where 
aptitude constructs are commonly conflated with concurrent abilities and confounded 
with personality and socio-economic background.  In other words, generative images 
provide more convincing evidence of validity than traditional correlation methods. 

Purpose of this report is to describe neurological validation of a cognitive AJ test model 
that implements a generative algorithm to produce visual test images.  Based on 
speculative aesthetic theory and empirical AJ studies, artificially generated images 
were first validated with professional artists using conventional correlational methods,
then visual preferences and sMRI brain scans were collected from a layperson 
sample.  Structural MRI results were correlated with AJ aptitude scores with intentions 
of identifying neuron sites that corroborate construct validity. For example, a sMRI 
scanning hypothesis was AJ aptitude is a measurable construct related to certain 
prominent neurological sites, as well as dedicated, neuro-aesthetic networks.  In other 
words, high aptitude persons should show neurological structure that not only differs 
from those lower on the aptitude construct but is consistent with published studies of 
aesthetic appreciation. 

Results in this research show AJ aptitude is mediated by a distributed neuron 
processing network and modest support for asymmetrical right hemispheric 
lateralization for at least certain aspects of AJ aptitude. In general, implementation of 
a generative art algorithm substantially improved AJ aptitude test validity by showing 
respective brain structures corresponding to independent test factors.   

Prominent questions addressed by this research are, first, do sMRI brain scans 
support validity of generative images for AJ aptitude testing?  Secondly, does sMRI 
validation, in fact, present implications for construct validity that significantly differ from 
traditional methods?  A related question is, do generative algorithms and sMRI affect 
construct validity?  Finally, how might generative art improve construct validation in 
future?

Sections below provide philosophical orientation to generative art, aptitudes, and
mental measurement, which is followed by background for presented empirical 
research. Then structural sMRI results are presented of an AJ aptitude test sample.
Validity implications of these results are interpreted for AJ aptitude testing.   
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1.1 Philosophical orientation   

1.11 Generative art 
From a broad metaphysical perspective, generative art is an insight into naturally 
occurring growth mechanisms found throughout nature.  It is a cosmological principle 
that is not yet understood but is widely recognized.  Dorin [3] below alludes to profound 
implications of generative mechanisms. 

Generative processes have been long evident in art, far predating current era 
of the digital computer. From Paleolithic ornamental art and hydraulically 
activated automata of ancient Alexandria (Hero 1st C. CE), Islamic art circa the 
ninth century, through to medieval and Renaissance clockwork figures . . . . all 
of these [have] generative processes. [3, p. 240]) 

Naturally occurring generative mechanisms are independent of particular artistic styles 
or movements and are, arguably, “universal” [4].  Philosophical foundations for these 
mechanisms are “Pythagorean concepts of unity and harmony based on numerical 
principles” [5]. They are fundamental to phylogenetic forces producing natural 
variation.  

Mathematics and visual arts have long, extended relations, which promote 
contemporary statistical ideas about generative art. Pythagoreans, for example, 
predate Western philosophy, and their evaluation of proportions was instrumental to 
art and sculpture of ancient Egypt and Greece.  Proportion in art has reappeared 
historically in Divine Proportion, Golden Mean, and Golden Ratio. By the 
Renaissance, painters were using mathematical techniques to achieve visual 
perspective, and a harmony between arts and mathematics continued through the 
Enlightenment. Nineteenth century cosmological confusion precipitated by
thermodynamics and quantum theory provoked stochastic reactions in 20th century art 
(Arps, 1917, Collage with Squares Arranged according to the Laws of Chance).
Modern philosophers began to speculate on a scientific metaphysics defined by 
chance and probabilistic order [6].    

Stochastic ideas echoed through 20th century as contemporary artists absorbed 
underlying cosmological principles of chance and order.  For example, Tzara and Arp
were early promoters of Dada Art, which popularized chance in visual art. Kandinsky 
and Malevich would show its influence in their paintings.  Mondrian and the school of 
neoplasticism were based on principles of chance and order.  Drip paintings by
Jackson Pollack and checkered paintings by Ellsworth Kelly both integrated stochastic 
methods in 1950s, while John Cage advanced autonomous stochastic procedures in 
visual arts in 1970s and 1980s.

The generative computational algorithm described in this report reproduces a 
mechanism of chance, order, and harmony commonly found in both nature and visual 
arts but with an adaptation that distinguishes between visual preferences of artists and
nonartists. Order and complexity have been explicitly manipulated to separate visual 
preferences into aptitude-based differences predictive of artistic sensitivity.
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1.12 Aptitudes 
Aptitude conceptions were already contentious issues among philosophers in ancient 
Athens over 2,500 years ago. Aristotle presented a classical perspective in 
Nicomachean Ethics where aptitudes are natural capacities [7].  Like Plato, Aristotle 
equated political and philosophical abilities with natural endowments.  In Plato’s 
Republic, aptitude determines assignment to education and confers special social 
status. These rigid, exclusive ideas about aptitude changed during the Enlightenment 
when Kant [8] rejected fixed human abilities and asserted foundations for a priori 
mental structures now expressed in terms of “emergence”, that is, knowledge that 
accumulates on basis of incremental experiences. Contemporary aptitude thinking 
leans toward epistemological conceptions that inherently depend on interactions 
between mental preconceptions (genetic aptitude) and learning, which establish 
knowledge.  These ideas are foundations for developmental theory, yet archaic 
conceptions of aptitude as fixed mental traits remain dominant in lay discussions. 

By the 20th century, classical rhetorical perspectives were replaced by ontological
assertions that aptitudes are nonphysical, nonmaterial “entities” yet can be inferred by 
observations and are consistent with numerical representation. In context of Galton’s 
broad eugenics movement [9], 20th century aptitudes became a psychometric 
invention thoroughly grounded in standardized testing movement of that time.  
Moreover, aptitude testing became instrumental to prediction of future student 
performance and integrated into public policy and college admission practices. Not 
surprisingly, college admissions board and scholastic aptitude tests were established 
in 1930s.

In contemporary discourse, aptitude has acquired objective statistical status and has 
gained prominence predicting human performance based on aggregated group 
parameters, while pseudo-scientific nomenclature has increasingly made aptitude 
conceptions less transparent. Aptitude has progressed from Platonic and Aristotelian 
rhetorical conceptions to contemporary developmental theory, which is filled with new 
terms such as latent structures, genetic variance, genetic factors, and genetic 
“influences” [10], as well as heritability estimates [11]. Aptitude is also generally 
subsumed under genetics of cognitive ability and behavior genetics. Aptitude in 
contemporary technical nomenclature is an obscure term to laypersons though 
typically associated with talent and ability.  Not surprisingly, this shift to objective 
formulation is accompanied by growing politicization. By mid-20th century, aptitude 
was perceived as a source of socio-political control [12].

This shift from an Aristotelian rhetorical approach to contemporary statistical construct 
with predictive applications, however, is now recognized to come at substantial cost 
to human development.  Traditional aptitude models have encouraged public policies 
that systematically exclude cultural minorities and disadvantaged youngsters from 
high quality educational resources, which, in turn, has institutionalized low school 
performance [17], as well as fostered an appraisal environment that discourages self-
motivation and achievement [18, 19].  Issues surrounding debates between nativism 
and empiricism such as “emergence vs representation” models of encoding neurons, 
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relevance of latent structures and influence of social environment on human 
development are central to contemporary understanding of aptitudes. 
As a biological concept, genetic traits govern broad areas of human development.
Genetic determination of physical traits such as hair and eye color are commonly 
accepted, while many behavioral and psychological traits are also associated with 
genetic origins.  For example, twin studies of behavioral traits and disorders such as 
aggression, schizophrenia, alcoholism, depression, and obesity now show significant 
portions of statistical variance associated with genetics [13].  

Mental aptitudes such as music, language, mathematics ability, language, and visual 
arts also have genetic components. Substantial research has been conducted into 
genetics underlying music aptitude [14, 15]. Heritability estimates for creative arts-
related aptitudes, which includes visual arts, have been estimated to range between 
.40 and .71, which suggest around 50 percent or so of observed variability can be 
safely attributed to heredity [11].  Not surprisingly, other research also points to central 
role of genetic aptitude in visual arts talent development [16]. Yet predictive accuracy 
is now understood to be precarious because aptitude expression is keenly dependent 
on genetic switches linked to both biological and social-cultural conditions.  

2. Background 

2.1 Generative image algorithms 

Generative art in psychometrics has 19th century origins.  A visual preference survey 
was first conducted by Fechner [20] when he manipulated proportions of an original 
painting to resolve an authenticity dispute. At that time, he pointed to central role of 
complexity or variety on visual arts preference and implied coherence or “unity” 
fundamental to understanding aesthetic preference.  Fechner described procedures 
for measuring complexity of polygons but did not produce images. 

Figure 1.  Birkhoff samples contrasting items with highest positive and highest 
negative factor loadings, from Eysenck [24]. 
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Synthetic images representing explicit manipulation of complexity and order first 
appear in Birkhoff [21].  He proposed the following mathematical model and produced 
90 polygons based on it.   

     M = O/C     (1) 

Where M is an artistic measure that is a function of order and complexity.  In other 
words, artistic value of any pattern is always greatest when order (O) is maximized 
relative to complexity (C).  At any level of complexity, an increase in order always 
increases overall aesthetic value of a design. 

Eysenck followed Birkhoff’s lead and collected ratings for polygons from artists and 
nonartists, which he factor analyzed [22-25].  Figure 1 presents examples of Birkoff’s 
polygons.  Eysenck found those on left with highest positive factor loadings, while 
polygons on right with highest negative loadings. He combined them to obtain a 
“supra” factor with relatively high psychometric reliability, .89, which suggests visual  
preferences are quite stable, an extraordinary finding at that time.  Eysenck empirically 
identified two visual preference factors, “T” and “K”, and he considered T especially 
important because artists and nonartists agreed on it.  A general preference factor,
while K was a bipolar factor separating artists and nonartists.  In general, he found  

  

Figure 2. Attneave [30] discovers function of redundancy in visual images. His 
manipulation of redundancy on left demonstrates explicit visual effects.  Image on right 
shows practical applications of redundancy in native basket weaving.  
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responses to polygons manifested a curvilinear relation between preference and 
complexity, which distinguished between nonartists and artists.  Artists reach their 
peak for random complexity significantly sooner than nonartists.  This important finding 
has led to enormous confusion because many replication studies failed to include both 
artists and nonartists, which lead to inconsistent and unusual results about preference 
for complexity.  Eysenck’s T later became basis for Visual Aesthetic Sensitivity Test 
(VAST) [26], which also became controversial because psychometric reliability was 
never adequate for valid use.   

Eysenck successfully demonstrated visual preferences are consistent and a likely 
source of individual differences, which he speculated might be associated with 
personality [27].  However, his success was largely limited to preferences for polygons.  
Later, Attneave also conducted preference studies but in a format that we now call 
pixels [28].  Attneave [28-30] applied principles of information theory developed in 
acoustics to vision perception and discovered statistical parameters associated with 
preferences for statistical images that systematically differ in complexity and 
redundancy (order).  Figure 2 presents several manipulations of redundancy and 
compares them with native basket weaving.   

Attneave demonstrated effects of redundancy when manipulated as a fixed parameter.  
In contrast, Noll [32-34] advanced generative art by developing algorithms with fixed 
parameters which also included a stochastic component executed by computer.  He 
essentially extended potential range of images and effectively introduced unique 
methods to produce images that simulated authentic visual art.  Figure 3 presents 
computer rendered samples and a copy of Mondrian’s Composition with Lines, 1917.    

Figure 3. Images on left represent redundancy variations produced by computer [32].  
Images on right compare Mondrian’s Composition with Lines, 1917 and a computer 
reproduction.   
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Figure 4.  Generative image algorithm applied to aptitude measurement. 

2.2 Generative art applied to AJ aptitude testing 

Developments above describe key insights into stability of human visual preference, 
influence of image properties on visual preference, and image manipulation by 
computer algorithms. However, with exception of Eysenck, these advances did not 
address individual differences.  A dedicated generative algorithm to produce images 
for identifying AJ aptitude differences first appears at the Johnson O’Connor Research 
Foundation (JOCRF) in Chicago in late 20th century when an effort was initiated to 
improve AJ aptitude testing.   

Substantial advances described above made this goal reasonable and practical.  
Building on foundations of generative art and visual preference studies, a stochastic 
algorithm was developed to manipulate complexity and redundancy in random 
patterns, and factor analytic investigations confirmed Complexity and Redundancy 
factors.  Extensive validation studies were conducted with adults and school children, 
as well as professional artists.  Those studies found broad support for measuring AJ 
aptitude with calibrated test images.  Figure 4 presents sample images from a 
generative algorithm based on Eysenck’s K or complexity factor that distinguishes 
between artists and nonartists. 

3.  Generative art and test validity  

Mental test development is dependent on items that solicit responses and empirical 
validation to establish meaningfulness of score distributions.  Both requirements 
present special challenges to visual arts testing.  Authentic, historical artworks are 
well-known and typically rich in thematic content, figurative details, and artistic style.
Not surprisingly, these characteristics may interact with viewer background such as 
arts training and interest when images are presented for preference judgment.  
Consequently, AJ aptitude studies based on authentic artworks typically represent a 
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confounding of genetic endowment, social-cultural background, and arts training.
Despite protracted commercial and educational efforts through 20th century, failure to 
address these problems led to virtual abandonment of AJ aptitude testing. An 
exception is VAST, a standardized aesthetic sensitivity test originally developed by 
Eysenck based on his T factor.  Unfortunately, field testing largely rejected VAST 
because of low score reliability and inadequate validation [34, 35]. Validation was 
based on a sample of only eight professional artists, while other research indicates 
confounding relations with personality, intelligence, and creativity [36].

In addition to complications presented by authentic art works, artist validation samples 
are also problematic because of vulnerability to selection bias especially in restricted 
small artist samples.  See Osborne, [37] for discussion of artist validation problems.

GA addresses these problems in two ways.  First, generative algorithms provide 
control over image production, which increases objectivity of aptitude testing.  Images 
can be developed with specific properties such as hypothetical genetic components 
that can be separated from experience-based learning components during statistical 
analyses. Those image aspects believed to elicit genetic-linked responses can be 
isolated, while all other image properties are randomized hence eliminated from 
comparisons. Instead of idiosyncratic, subjective reactions to complex, 
multidimensional images, generative algorithms parse an image into those 
components directly relevant to cognitive or psychological performance being tested.

Secondly, generative algorithms provide an additional advantage by modeling AJ
preference in a sequential process during overall image appraisal, which provides a
theoretical context for collecting preference judgments and evaluating their validity. A
related benefit is examination of separate factors during preference, which contributes 
to understanding perceptual mechanisms guiding preference judgments. Moreover, 
GA manipulation of separate factors facilitates evaluating their cumulative effect on 
preference, as well as interaction with other characteristics.  Likewise, temporal effects 
of their presentation order become more apparent.   

3.1 sMRI validation in psychometrics   

In general, structural sMRI reveals neuron tissue associated with some aspect of 
person or environmental variation.  Consequently, MRI technology offers a method of 
examining specific cognitive or affective structure and functions purported being 
assessed by a psychometric instrument, which is construct validity.  For example, MRI 
has been applied to psychometric music and language aptitude models [38, 39].  Other 
examples are creative writing, which was divided into a generative and evaluative 
procedures and functional MRI mapping demonstrated separate activation pathways 
[40].  MRI has been useful for verifying cognitive change [41].  In present research, AJ
aptitude scores were compared with brain tissue density and inferred brain function.

In this research, validity of GA images for measuring AJ aptitude was established first 
by conventional methods, that is, image properties were statistically correlated with 
preferences of a large sample of professional artists, which established a scoring 
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protocol.  When these images were presented to a sample of laypersons, structural 
MRI brain scans were collected and neurological gray matter density correlated with 
their AJ aptitude test scores.  In other words, generative images helped to define a 
preference gradient or continuum, which was reconciled with visual preferences of 
professional artists.  Then brain scans were collected of laypersons to verify 
neurological implications of validated aptitude scores.    

A central issue in sMRI aptitude validation concerns hemispheric concentration of gray 
matter brain tissue. Traditional neurological views are visual arts aptitude should be 
lateralized to right hemisphere because of dependence on spatial abilities, mental 
imagery, and creativity [42], which contrasts with left lateralization of cognitive abilities 
such as math aptitude (addition and subtraction, left anterior portion of arcuate 
fasciculus [43], reading ability [44], cognitive abilities in general [45, 46], language 
(leftward lateralization of the inferior frontal gyrus in second language learners) [47],
and music aptitude [48]. 

However, traditional ideas about hemispheric lateralization have been substantially 
weakened by growing sophistication of sMRI studies [49, 50], which emphasize more 
complicated neuro processing of creative arts distributed across both hemispheres 
depending on task.  For example, Aziz-Zadeh et al. [51] found left lateralization even 
for canonical right hemisphere tasks, while drawing lateralization was not correlated 
with 22 variables in a study by McManus and Chamberlain [52].  Mihov et al. [53] did
not find hemispheric differences in a study of creativity, while Bolwerk, et al. [54] did 
not report lateralization for visual arts. Moreover, direct sMRI evidence for 
hemispheric specialization during representative drawing is limited.  Makuuchi, 
Kaminaga, and Sugishita [55] found drawing in nonartists characterized by bilateral 
parietal lobe activation, while Chamberlain et al. [49] presented mixed results in a 
drawing study.  Following statement by Chatterjee and Vartanian [56] presents several 
contemporary issues concerning visual arts and hemispheric lateralization. 

The popular notion that the right hemisphere is the artistic hemisphere is likely 
wrong.  According to this view, damage to the right hemisphere should 
profoundly affect artistic production and left hemisphere damage should largely 
spare such abilities. . . If anything, damage to the left hemisphere induced more 
extensive alterations in artistic production, including in the symbolism depicted, 
than did damage to the right hemisphere. [56] 

Another issue in sMRI aptitude validation concerns whether aptitude brain structure 
conforms to published neuroaesthetic networks.  Brown et al. [57], for example, 
conducted a comprehensive investigation of published neuro-networks and rejected 
claims they represent subsystems exclusively dedicated to neuroaesthetic processing.  
In contrast, Vartanian and Skov [58] concentrated on a narrower subset and identified 
a neuro-aesthetic network they believe more clearly defines a coherent neuoaesthetic 
system.  The prominent issue here is whether aptitude-related neuron structure 
uniquely associated with professional artists replicates established neural-aesthetic 
networks.  If aptitude results are mainly incoherent or inconsistent, then an aptitude 
validity argument is substantially weakened.   
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3.2 Hypotheses 

An assertion in this research is GA methods for producing visual images can 
manipulate features that systematically elicit preferences associated with AJ aptitude.  
Moreover, this manipulation can target both physical and emotional properties 
independently of all other image features.

Given this context, goals of this research were to demonstrate convergence of 
preference for synthetic images with published arts-related neuro-processing centers.
Then a related goal was to clarify whether neuron structure provides any support for 
asymmetrical lateralization traditionally associated with arts and creativity processing 
in right hemisphere. 
  
Consequently, this research will test following hypotheses.    

Hypothesis 1:  AJ aptitude is a physical entity.  Therefore, sMRI brain scanning 
will identify significant gray matter density associated with AJ aptitude scores, 
as well as asymmetric lateralization to right hemisphere, the traditional center 
for aesthetic activities.  

Hypothesis 2: sMRI will demonstrate consistency between AJ aptitude structure 
and published visual arts processing networks, in particular, a neuro network 
established by Vartanian and Skov [58]. 

4. Method 

4.1 Sample 

Volunteers from Johnson O’Connor Research Foundation (JOCRF) in New York were 
invited to participate in an aptitude study, while sMRI scanning was conducted at Mt. 
Sinai Medical Center. All who volunteered were screened for medical and psychiatric 
illnesses including a history of head injury and substance abuse. The final 40 subjects 
completing sMRI included 21 males and 19 females, aged 18-35 years (mean age = 
26.6, SD = 4.9). 

4.2 Data 

sMRI image parameterization was conducted with standard procedures. 

4.3 Cognitive test model 

Standardized test items (visual images) were constructed with a published statistical 
algorithm based on a theory-based visual arts test model and validated with 
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professional artists [35].  Item parameters were estimated with a linear probabilistic 
measurement model [59].

4.4 Psychometric image development

A cognitive model based on Eysenck's K factor, Attneave’s stochastic composition 
process, and classical information theory principles [60, 61] was implemented to 
manipulate complexity and order (redundancy) in images that distinguish between artists 
and nonartists (see Figure 5).  A factorial design was developed where 3 levels of 3 
complexity factors were crossed with 3 levels of a redundancy factor to construct images 
contrasting higher and lower complexity/redundancy levels.  Then 84 image pairs 
contrasting higher and lower complexity/redundancy combinations were presented to 
several JOCRF examinee office samples with instructions to select their preference.
Their responses were dichotomously scored (0/1) in conformity with Eysenck’s research 
indicating artists prefer less-complex designs. Conventional factor analysis then identified 
two prominent factors that were called Simplicity (Visual Designs 1) and Uniformity (Visual 
Designs 2). Original 84 items were reduced to 35 forced-choice items (Simplicity = 22 
items and Uniformity = 13 items).  Following algorithm represents an image model for 
simultaneously specifying complexity and redundancy in stochastic images: 

(CeCt)Rp             (2) 

which was implemented across 1-layer of image processing levels, where each level has 
rank in an overall hierarchy, and: e = n of elements and n takes values 2, 4, and 8 t = 
types of elements and ranges from 1 to 4 p = n of panels p and n takes values from 1,  
2, and 4, which leads to images of 0%, 50%, and 100% redundancy, respectively. Figure 
3 presents complexity and redundancy components in a VDT image model.   

Figure 6 presents an aptitude processing model that guided this research and
distinguishes between artists and non-artists. Several principles underlie this model, 
namely, recursion, information components, and hierarchical order. VD 1 and VD 2 are 
processed by syntactic component early in the judgment process.  Some authorities have 
demonstrated instantaneous decisions about artistic quality when images are presented.  
More complicated images would involve many more components and frequently several 
iterations through the model before an appraisal is established.  

4.5 Analysis 

Volumetric gray matter measurement/correlations were computed between scores and 
white matter density. 

4.6 Procedures 

Thirty five calibrated image pairs were printed and presented to several hundred 
examinees in JOCRF testing offices.  Standardized protocol was followed and total test 
scores were entered in computer files.  
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Figure 7. Distribution of increased gray matter density associated with VD 1.

XVII Generative Art Conference - GA2014

page # 273



Table 1

Brain regions in which gray matter density significantly correlated with Visual Designs 1 
scores in overall sample (p < .01).

Anatomy(Brodmann)
MNI 

coordinates
Cluster 

Size
Z Puncorr

x y z
VD 1

Overall
positive

R Parietal lobe Inferior parietal lobule B 7 34 -58 42 257 3.81 .000
R Parietal lobe Superior parietal lobule B 7 16 -54 56 5349 3.73 .000
L Parietal lobe Precuneus B 7 -12 -46 54 3.46 .000
L Parietal lobe Precuneus B 39 -32 -64 35 3.42 .000
R Frontal lobe Medial frontal gyrus B 9 22 42 18 330 3.61 .000
R Frontal lobe Middle frontal gyrus B 8 32 27 37 2.77 .000
R Frontal lobe Superior frontal gyrus B 10 26 51 7 2.43 .008
L Occipital lobe Middle occipital gyrus B 19 -32 -83 13 695 3.53 .000
L Temporal lobe Middle temporal gyrus B 39 -38 -67 16 3.29 .001
L Occipital lobe Inferior occipital gyrus B 18 -34 -82 -6 3.04 .001
R Parietal lobe Supramarginal gyrus B 40 48 -41 30 130 3.31 .000
R Frontal lobe Middle frontal gyrus B 10 44 53 19 184 3.19 .001
R Brainstem Medulla 4 -37 -45 158 3.09 .001
R Frontal lobe Precentral gyrus B 6 46 -14 34 255 3.06 .001
R Frontal lobe Precentral gyrus B 6 40 -4 33 2.52 .006
R Frontal lobe Middle frontal gyrus B 6 36 -4 46 2.44 .007
R Occipital lobe Middle occipital gyrus 30 -76 4 74 2.98 .001
R Occipital lobe Middle occipital gyrus B 18 26 -82 -3 2.65 .004
R Brainstem Midbrain     RN 2 -20 -7 615 2.96 .002
R Sub-lobar Thalamus 4 -21 1 2.87 .002
R Sub-lobar Thalamus MDN 4 -19 10 2.69 .004
L Occipital lobe Cuneus B 19 0 -90 28 48 2.74 .003
R Occipital lobe Middle temporal gyrus B 19 40 -61 14 33 2.68 .004
L Temporal lobe Middle temporal gyrus B 37 -51 -58 1 43 2.68 .004
L Frontal lobe Middle frontal gyrus B 6 -24 2 44 66 2.67 .004
R Temporal lobe Fusiform gyrus B 37 40 -53 -11 23 2.48 .007
L Frontal lobe Precentral gyrus B 4 -36 -13 52 41 2.57 .005
L Occipital lobe Lingual gyrus B 18 -12 -68 2 26 2.60 .005
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Figure 8.  Brain sites show increase of gray matter density structure and asymmetrical 
lateralization to right hemisphere associated with artistic Judgment aptitude test scores.
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4.7 Brain image acquisition and analyses (Structural sMRI acquisition) 

A 3T Siemens Allegra sMRI scanner (Siemens Medical Systems, Ehrlangen, Germany) 
was used at Mt. Sinai Medical Center, NYC. (Scanning details on request.)

4.8 Voxel-based-morphometry and statistical analyses 

Voxel-based-morphometry (VBM) was implemented to identify brain areas where gray 
matter volumes were correlated to AJ scores. Statistical Parametric Mapping software  
(SPM5; The Wellcome Department of Imaging Neuroscience, University College London) 
was implemented applying VBM unified segmentation protocol [62, 63].

5. Results 

5.1 Overview 

Data analyzed for this presentation show AJ aptitude scores were positively correlated 
with gray matter density in 21 brain regions spanning parietal, occipital, frontal and 
temporal lobes, as well as regions in the thalamus and brainstem. Figure 7 shows 
their distribution across brain sites, which indicates increased gray matter density of AJ 
aptitude is associated with following neurological functions:     

 Visual processing (occipital lobe) 
 Spatial relationships visual imagery (parietal lobe) 
 Emotion (temporal lobe and insula)  

Dopamine (frontal lobe)

In addition, significant gray matter density increases were found in brainstem, both 
medulla and midbrain. 

5.2 Aesthetic networks 

Table 1 presents results identifying brain sites with significant correlations between matter 
density and AJ test scores.  Results also show predominant concordance between AJ 
aptitude scores and specialized networks.  For example, AJ aptitude scores were 
consistent with both passive, art appreciation neuro-networks [57, 58], and an active, 
representational drawing network [55].   

5.3 Asymmetric lateralization 

Finally, brain gray matter density showed both bilateral and asymmetrical lateralization 
with significant accumulation lateralized to right hemisphere.  Greatest concentration of 
gray matter density occurred in superior and inferior parietal lobes of right hemisphere.  
Lateralization also occurred frontal, occipital, sub-lobar, and brainstem.  Figure 8 presents 
graphic details about parietal lateralization and Table 1 presents coordinates.       

XVII Generative Art Conference - GA2014

page # 276



6. Discussion 

This study examined statistical relations between volumetric gray matter density and AJ
aptitude scores based on visual preferences for images generated by a generative 
image algorithm. Images were presented in pairs that contrasted variations of 
complexity and redundancy. Prior studies had validated preference scoring with a
broad consensus of professional artists.  sMRI results showed significant correlations 
between visual preference, scored in direction of professional artists, and increased 
gray matter density in 21 brain regions.  In general as AJ scores increased from low to 
high, gray matter density increased in those brain regions. Therefore, persons who 
tended to express preferences conforming to those of professional artists, tended to 
show increased gray matter density in corresponding brain sites, namely, frontal, 
parietal, temporal, and occipital lobes. Consistency between increased AJ density 
areas and published aesthetic appreciation networks was also evaluated for purposes 
of test validation, and those results showed general concordance of VD 1 and VD 2 with 
neuro-aesthetic networks. 

As expected, results showed VD 1 (Complexity) and VD 2 (Redundancy) associated 
with different neuron sites, respectively, and VD 1 was dominant showing substantially 
more significant brain structure. Of that structure associated with VD 1, approximately 
70 percent occurred in parietal and frontal lobes. As predicted, right hemisphere 
lateralization occurred primarily for VD 1 images.      

6.1 GA contributions to test validation 

While these results tend to support results from prior conventional validation procedures, 
GA implementation presented important epistemic benefits during sMRI, which 
substantially improved validation. Several benefits are described below.

 sMRI demonstrated a cognitive perceptual aptitude test model based on 
underlying factors is not only largely consistent with published neuroaesthetic 
studies of visual arts appreciation but also clarified the underlying perceptual 
mechanism – avoidance of higher complexity random patterns when presented 
in contrasting pairs. 
GA images provided insight into importance of coherence on arts-related visual 
preferences. 

 sMRI results indicated that GA factors were instrumental to measuring not only 
visual arts sensitivity but also drawing production – an unexpected performance 
implication of AJ aptitude measured with VD 1 and VD 2. 
GA established foundations for constructing more complicated visual art and 
designing more sophisticated preference models. 

Psychometric validation is a process of accumulating empirical evidence that supports 
claims of a test model.  Those claims here refer to increased brain structure for high AJ 
aptitude persons, and consistency with expected neuro-processing.  In general, these 
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results show neuroscience analysis of preference for generative images offers insight into 
brain structure, as well as functions relevant to those claims. 

6.2 Implications for cognitive test validation

sMRI brain scans provide physical corroboration for a hypothetical construct, which is 
more profound than validation with only conventional test score correlations. It offers 
insight into the cognitive mechanism involved in AJ aptitude expression, and in certain 
study designs, sMRI of GA preferences could provide values for estimating variance 
components of genetic and learned abilities. In this research, sMRI results also 
substantially expanded AJ aptitude interpretation by including drawing performance.  

6.3 Future research 

An interesting question is association of visual arts learning instead of AJ aptitude with 
brain structure, which may also show significant neuro structure.  Bolwerk [54] in fact 
described substantial influence of art making on brain structure described below.

We observed that the visual art production group showed greater spatial 
improvement in functional connectivity in frontal and parietal cortices . . . than the 
cognitive art evaluation group. Moreover, the functional connectivity in the visual 
art production group was related to psychological resilience (i.e., stress resistance) 
at T1. Our findings are the first to demonstrate the neural effects of visual art 
production on psychological resilience in adulthood.  [54] 

Other studies [40, 49] present additional support for neurological structure associated 
with visual arts-related learning.  Consequently, results in this research would benefit from 
longitudinal study before and after visual arts training to clarify independence of aptitude 
neurological structure from experience and learning.

These prospective investigations of learning and aptitude, as well as neuroprocessing 
comparisons between professional artists and nonartists should be examined in the 
framework of linear measures.  Published neuro-aesthetic studies are typically conducted 
with ordinal measures, which lack precision and objective measuring units for 
investigating longitudinal change. 

6.31 More sophisticated visual images 
Generative images examined in this research only manipulated complexity and 
redundancy at the syntactic level of image processing isolated from other information in 
an image.  The algorithm developed in this research should be elaborated to 
accommodate more complex arrangements of hierarchical components with narrative, 
emotional and expressive content.  These studies would lead to more sophisticated 
understanding of AJ aptitude brain structure. 
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6.4 Limitations 

For an aptitude study, this research was limited by its concentration on a single 
observation of modest sample size.  Consequently, variance components were not 
computed to clarify stability of neuro structures presented here.  Another limitation was 
lack of professional artists in the sample.  Some participants may have had some arts 
background, but without background information, association with neuro structures was 
not possible to investigate.   

7.  Conclusion 

What are the contributions of GA to psychometric test validity? 

 Isolation of relevant components in cognitive test model, which facilitates an 
understanding of their function during human performance. 

 Theoretical cognitive foundations to guide construct development 
 Reproducible methodology 

How does sMRI improve mental test validation? 

 Clarification of components that contribute to human performance 
 Corroboration of cognitive test model theory with brain function and structure 
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